Materiály používané na řezné nástroje v oblasti třískového obrábění
Bakalářská práce

Vedoucí práce: Ing. Jiří Votava, Ph.D.

Vypracoval: Petr Kubík

Brno 2013
PROHLÁŠENÍ

Prohlašuji, že jsem bakalářskou práci na téma „Materiály používané na řezné nástroje v oblasti třískového obrábění” vypracoval samostatně a použil jen pramenů, které cituji a uvádím v přiloženém seznamu literatury.

Bakalářská práce je školním dílem a může být použita ke komerčním účelům jen se souhlasem vedoucího bakalářské práce a děkana Agronomické fakulty Mendelovy univerzity v Brně.

dne ………………………………

podpis bakalanta ……………………
Chtěl bych poděkovat vedoucímu své bakalářské práce Ing. Jiřímu Votavovi, Ph.D. za odborné vedení, užitečné připomínky, cenné rady, konzultace a pomoc při konečném zpracování práce.
ABSTRAKT

Bakalářská práce je zaměřena na materiály používané pro výrobu řezných nástrojů v oblasti třískového obrábění. Hlavním záměrem práce je rešeršní zpracování technických materiálů používaných pro výrobu řezných nástrojů a jejich opotřebení. Dále se práce zaměřuje na základní popis a rozdělení třískového obrábění. Do práce je zahrnut experiment, který spočívá v analýze opotřebení řezného nástroje.

Klíčová slova:

materiál, řezný nástroj, obrábění, opotřebení

ABSTRACT

The bachelor thesis is focused on materials used for the manufacture of cutting tools for splinter machining. The main intention of this thesis is division of technical materials used in the manufacture of cutting tools and their wear. Further, the thesis is focused on basic description and division of splinter machining. An experiment which analyzes wear of a cutting tool is included into the thesis.

Key words:

material, cutting tool, machining, wear
OBSAH

1 ÚVOD ... 8

2 CÍL PRÁCE ... 8

3 ZÁKLADY TŘÍSKOVÉHO OBRÁBĚNÍ .. 9
 3.1 Obecné pojmy a terminologie .. 9
 3.1.1 Obrobek .. 9
 3.1.2 Nástroj ... 10
 3.1.3 Pohyby při obrábění .. 11
 3.2 Základní metody obrábění ... 12
 3.2.1 Soustružení ... 13
 3.2.2 Frézování .. 16

4 ROZDĚLENÍ MATERIÁLŮ POUŽÍVANÝCH PRO VÝROBU ŘEZNÝCH NÁSTROJŮ .. 19
 4.1 Nástrojové oceli .. 21
 4.1.1 Nástrojové nelegované oceli ... 21
 4.1.2 Nástrojové legované oceli ... 21
 4.1.3 Rychlořezné oceli ... 22
 4.1.4 Oceli na lité nástroje .. 22
 4.2 Slinuté karbidy ... 22
 4.2.1 Nepovlakované slinuté karbidy .. 23
 4.2.2 Povlakované slinuté karbidy .. 25
 4.3 Cermetny ... 27
 4.4 Řezná keramika ... 29
 4.4.1 Oxidická keramika ... 30
 4.4.2 Nitridová keramika .. 31
 4.4.3 Vyztužená keramika .. 31
 4.5 Supertvrdé řezné materiály ... 32
 4.5.1 Diamant .. 32
 4.5.2 Kubický nitrid boru .. 33

5 OPOTŘEBENÍ ŘEZNÝCH NÁSTROJŮ 34
 5.1 Opotřebení otěrem ... 34
 5.2 Opotřebení křehkým lomem ... 35
 5.3 Opotřebení plastickou deformací .. 36
5.4 Formy opotřebení ... 37
6 EXPERIMENTÁLNÍ ČÁST .. 38
 6.1 Metodika hodnocení opotřebení nástroje .. 38
 6.2 Polotovar pro odebrání třísky .. 39
 6.3 Měření drsnosti .. 39
 6.4 Tepelné zpracování obrobených vzorků .. 39
 6.5 Měření tvrdosti obráběcích materiálů ... 40
 6.6 Hodnocení opotřebení použitých fréz ... 42
 6.7 Diskuse .. 46
7 ZÁVĚR ... 47
8 SEZNAM POUŽITÉ LITERATURY .. 48
9 SEZNAM OBRÁZKŮ .. 49
10 SEZNAM TABULEK ... 50
1 ÚVOD

Řezné nástroje používané pro třískové obrábění jsou vyráběny z širokého spektra materiálů. Prvotní rozdělení těchto materiálů lze provést do dvou skupin. Jedná se o rychlořezné oceli a slinuté karhidy. První skupina rychlořezných ocelí se používá především v konvenčním obrábění, kdy lze vlivem ostření měnit řezné úhly nástroje v závislosti na obráběném materiálu. Do druhé skupiny slinutých karbidů patří břitové destičky, které díky svým mechanickým vlastnostem jsou předurčené pro vyšší řezné rychlosti, ale pouze pro patřičný druh obráběného materiálu. Současné materiály (cermety, kubický nitrid bór, povlakované systémy) vznikly díky dlouhodobému a intenzivnímu výzkumu.

2 CÍL PRÁCE

Cílem bakalářské práce je vytvořit ucelený přehled používaných technických materiálů pro výrobu řezných nástrojů. Jelikož ve strojírenském praxi existuje široké spektrum uplatnění materiálů s rozdílnými mechanickými vlastnostmi (ocel, litina, pryž) rovněž existuje i široké spektrum materiálů na jejich obrábění. V jednotlivých kapitolách budou zpracovány poznatky o vývoji a použití těchto řezných materiálů i nástrojů.
3 ZÁKLADY TŘÍSKOVÉHO OBRÁBĚNÍ

3.1 Obecné pojmy a terminologie

Obrábění je technologický proces, kterým vytváříme povrchy obrobku určitého tvaru, rozměrů a jakosti, a to odebráním částic materiálu pomocí účinků mechanických, elektrických, chemických apod., případně jejich kombinacemi.

Řezání je obrábění, při kterém dochází k odebrání částic materiálu ve tvaru třísky břitem (ostřím, řeznou hranou) řezného nástroje. (Humár, 2003)

Přídavek je vrstva materiálu mezi obráběnou a obrobenou plochou obrobku, kterou obráběním odstraníme.

Odebíraná vrstva je část přídavku přikloněná k ploše řezu, která se odřezáváním mění v třísku.

Tříška je održíznutá a deformovaná vrstva materiálu obrobku. (Brychta, 2007)

3.1.1 Obrobek

Obrobek představuje objekt obráběcího procesu a je to obráběná nebo již obrobená součást či dílec. Z geometrického hlediska je charakterizován obráběnou, obrobenou a přechodovou plochou (obr. 1). Obráběná plocha je část povrchu obrobku, která má být odstraněna obráběním. Obrobená plocha je plocha vzniklá působením řezného nástroje. Z technologického hlediska je určena svými rozměry, tvarem, plochou, strukturou povrchu a vlastnostmi povrchové vrstvy. Přechodová plocha je okamžitá plocha obrobku
vytvářená při obrábění působením ostří řezného nástroje během otáčky nebo zdvihu.
(Humár, 2003)

Obr. 1 Plochy na obrobku (Humár, 2003)

3.1.2 Nástroj

Obráběcí nástroj je aktivní prvek v soustavě obrábění. Nástroj v interakci s obrobkem umožňuje realizaci řezného procesu. Řezání se uskutečňuje vnikáním pracovní částí nástroje (břitu) do materiálu obrobku a postupným oddělováním částic ve tvaru trásky. (Brychta, 2007)

Těleso je část nástroje, na které jsou přímo vytvořené nebo upevněné elementy ostří.

Upínací část (stopka) je část nástroje určená pro upnutí do obráběcího stroje.

Upínací díra je souhrn vnitřních ploch tělesa nástroje, určených pro nastavení a upnutí nástroje.

Řezná část je funkční část nástroje, která obsahuje prvky tvořící trásku. Zejména sem patří hřbet, čelo a ostří. U vícebřitého nástroje má každý břit svou řeznou část.
Břit je prvek řezné části nástroje, který je ohraničený čelem a hřbetem nástroje. Je to klinovitá část nástroje vnikající do obrobku. Může být spojený jak s hlavním, tak i vedlejším ostřím.

Základna je plochý prvek stopky nástroje sloužící pro umístění a orientaci nástroje při výrobě, kontrole a ošetření. Ne všechny nástroje mají jednoznačně určenou základnu. (Humár, 2003)

3.1.3 Pohyby při obrábění

Hlavní řezný pohyb je vzájemný pohyb mezi nástrojem a obrobkem. Je realizován obráběcím strojem. Směr hlavního řezného pohybu je definován jako směr okamžitého hlavního pohybu uvažovaného bodu ostří. U soustružení se jedná o rotační pohyb obrobku, u frézování a vrtání je to rotační pohyb nástroje, při hoblování je to přímočarý pohyb obrobku. Řezná rychlost \(v_c \) je okamžitá rychlost hlavního pohybu uvažovaného bodu ostří vzhledem k obrobku.

Vedlejší řezný pohyb (posuvový pohyb) je realizován obráběcím strojem jako další relativní pohyb mezi nástrojem a obrobkem. Společně s hlavním pohybem umožňuje plynulé nebo přerušované odřezávání třísky z obráběného povrchu. U některých způsobů obrábění není tento pohyb potřebný (protahování). Posuvová rychlost \(v_f \) je určena jako okamžitá rychlost posuvového pohybu v okamžitém bodě ostří vzhledem k obrobku.

Výsledný řezný pohyb vychází z hlavního a vedlejšího pohybu. Vznikne vektorovým součtem obou pohybů. Rychlost výsledného řezného pohybu \(v_c \) je okamžitá rychlost výsledného pohybu v uvažovaném bodě ostří vzhledem k obrobku.

Přísuv je pohyb nástroje nebo obrobku, kterým se nastavuje nástroj do pracovní polohy na požadovanou šířku ostří \(a_p \). (Brychta, 2007)
3.2 Základní metody obrábění

Obrábění je pracovní proces, při kterém dostává polotovar požadovaný tvar a rozměr finální strojní součástky. Metody obrábění lze rozdělit podle různých hledisek. Podle charakteru práce máme ruční a strojní metody obrábění. Ruční metody jsou např. řezání, pilování, sekání, zaškrabávání, atd. Strojní metody se dělí podle charakteristických znaků na:

- **metody obrábění pomocí nástrojů s definovanou geometrií** - soustružení, frézování, vrtání, vystružování, zahulubování, hoblování, atd.,
- **metody obrábění pomocí nástrojů s nedefinovanou geometrií** - dokončovací metody - lapování, honování, superfínšování, broušení, atd.,
- **nekonvenční metody obrábění** - chemické obrábění, obrábění vodním paprskem, elektroerozivní obrábění, obrábění elektronovým paprskem, atd.,
- **úpravy obrobených ploch** - leštění, hlazení, brokování, balotinování, válečkování, atd. *(Humár, 2003)*
3.2.1 Soustružení

Soustružení se používá především k obrábění rotačních ploch (válcových, kuželových). Materiál obrobku je odebrán jednobřitým nástrojem (soustružnickým nožem), který se pohybuje rovnoběžně s osou rotace obrobku upnutého ve sklíčidle, mezi hroty apod. Řezný pohyb je šroubovice, spirála nebo jiná prostorová křivka. Při soustružení lze také brousit, vrtat, vyvrtávat a řezat zárity. Soustružit lze také současně několika jednobřitými nástroji. (Vlach, 1990)

Řezná rychlost při soustružení se určuje:

\[v_c = \frac{\pi \cdot D \cdot n}{1000} \ [m \cdot min^{-1}] \]

kde: \(D \) = průměr obrobku [mm]
\(n \) = otáčky obrobku [min⁻¹]

Optimální velikost řezné rychlosti závisí na řezném nástroji (řezivosti), na obráběném materiálu (obrobitelnosti), na zvolené trvanlivosti nástroje a na průřezu třísky. (Ščerbejová, 1993)

Posuv je dráha, kterou vykoná nástroj za jednu otáčku obrobku. Rychlost posuvu v závislosti na otáčkách vřetene je:

\[v_f = f \cdot n \ [mm \cdot min^{-1}] \]

kde: \(f \) = posuv na otáčku [mm]
\(n \) = počet otáček vřetene [min⁻¹]

\[v_e = \sqrt{v_c^2 + v_f^2} \ [m \cdot min^{-1}] \]
Hloubka řezu se pohybuje od hodnoty několika desetin mm až po několik mm. Hloubka řezu, úhel nastavení, tvar řezné hrany v záběru a velikost posuvu mají vliv na velikost a tvar průřezu třísky. Pro základní druhy soustružení lze rozměr průřezu třísky vypočítat ze vztahu:

- **pro podélné soustružení:** \(a_p = 0.5 \times (D - d) [mm] \)

 kde: \(D = \) průměr obráběné plochy [mm]

 \(d = \) průměr obrobené plochy [mm]

- **pro čelní soustružení:** \(a_p = L - l [mm] \)

 kde: \(L = \) délka obráběné plochy [mm]

 \(l = \) délka obrobené plochy [mm] (*Brychta, 2007*)

Obr. 3 Základní práce na soustruží (Humár, 2003)
Tab. 1 Jakost povrchu a přesnost rozměrů při soustružení (Ščerbejová, 1993)

<table>
<thead>
<tr>
<th></th>
<th>R_a [µm]</th>
<th>IT</th>
</tr>
</thead>
<tbody>
<tr>
<td>hrubování</td>
<td>50 - 6,3</td>
<td>14 - 11</td>
</tr>
<tr>
<td>soustružení na čisto</td>
<td>6,3 - 1,6</td>
<td>11 - 9</td>
</tr>
<tr>
<td>jemné soustružení</td>
<td>0,8 - 0,4 (0,2)</td>
<td>9 - 5</td>
</tr>
</tbody>
</table>

Z technologického hlediska rozdělujeme soustružnické nože na radiální (celistvě, s pájenými břitovými destičkami, s vyměnitelnými břitovými destičkami), prizmatické, kotoučové a tangenciální. (Humár, 2003)

Další dělení radiálních nožů:

- **podle směru posuvu při obrábění** - levé a pravé,
- **podle způsobu obrábění** - pro obrábění vnějších ploch a pro obrábění vnitřních ploch. V každé z těchto skupin se nože mohou dále členit na uběrací, zapichovací, upichovací, kopírovací, závitové a tvarové,
- **podle tvaru tělesa nože** - přímé a ohnuté. (Brychta, 2007)

Z konstrukčně technologického hlediska se rozlišují soustruhy hrotové, svislé, čelní, revolverové a speciální. Podle stupně automatizace se používají soustruhy ručně ovládané, poloautomatické a automatické. (Humár, 2003)

Hrotové soustruhy se dělí na univerzální (umožňují všechny soustružnické operace v širokém rozsahu otáček a posuvů) a produkční (používají se pro větší výkony, mají menší rozsah otáček a nejsou vybaveny vodícím šroubem pro řezání závitů).

Svislé soustruhy slouží k obrábění velmi rozměrných součástí. Mají svislé vřeteno s vodorovnou upínací deskou. Mohou být jedno a dvoustojanové.

Čelní soustruhy se používají k obrábění součástí, které mají velký průměr a malou délku. Obrobky se upínají na líční desku s radiálními drážkami pro přestavitelné čelisti.
Revolverové soustruhy jsou určeny pro sériovou výrobu, kdy se při jednom upnutí obrobku postupně obrábí více nástroji upnutými v revolverové hlavě. Podle polohy osy otáčení revolverové hlavy jsou revolverové soustruhy s vodorovnou osou revolverové hlavy a se svislou osou revolverové hlavy. (Ščerbejová, 1993)

3.2.2 Frézování

Při frézování obrábíme otáčejícím se řezným nástrojem, tj. frézou, rovinné nebo oblé plochy, zhotovujeme drážky ozubení nebo závity. Tvar břitů frézy se řídí tvarem obráběné plochy. (Bartsch, 1965)

Posuv nejčastěji koná obrobek, převážně ve směru kolmém k ose nástroje. U moderních frézovacích strojů jsou posuvové pohyby plynu měnitelné a mohou se realizovat ve všech směrech. Řezný proces je přerušovaný, protože každý zub frézy odřezává krátké třísky proměnné tloušťky. (Humár, 2003)

Z technologického hlediska se podle polohy osy nástroje k obráběné ploše rozlišuje frézování:

- **válcové** - obvodem nástroje - osa nástroje je rovnoběžná s obráběnou plochou,
- **čelní** - čelem nástroje - osa nástroje je kolmá na obráběnou plochu, hloubka řezu se nastavuje ve směru osy nástroje.

Existují některé další způsoby frézování, které se odvozují od těchto základních způsobů:

- **okružní**,
- **planetové**. (Brychta, 2007)
Válcové frézování se převážně uplatňuje při práci s válcovými a tvarovými frézami. Obrobená plocha je rovnoběžná s osou otáčení frézy. Zuby frézy jsou vytvořeny pouze po obvodu nástroje. Hloubka odebírané vrstvy se nastavuje kolmo na osu frézy a na směr posuvu. V závislosti na kinematice obráběcího procesu se rozlišuje frézování nesousledné (nesouměrné) a sousledné (souměrné). (Humár, 2003)

U nesousledného frézování je směr otáčení frézy proti směru posuvu. Fréza zabírá zdola a v důsledku tloušťky břitu trvá určitou dobu, než zabere materiál. Průřez třísky se

Obr. 4 Válcové frézování: a)nesousledné, b) sousledné (Brychta, 2007)

Obr. 5 Čelní frézování (Humár, 2003)
postupně zvětšuje. Tříška je delší a silnější. Dochází ke stlačování a deformacím, což má za následek větší opotřebení břitu otěrem a drsnější obroběnou plochu. Řezná síla může měnit směr, střídavě nástroj přitlačuje a odtahuje, což může způsobit chvění. (Ščerbejová, 1993)

Pro zjednodušení se za řeznou rychlost pokládá obvodová rychlost nástroje:

\[v_c = \frac{\pi \cdot D \cdot n}{1000} \quad [m \cdot min^{-1}] \]

kde: \(D \) = průměr nástroje [mm]

\(n \) = otáčky nástroje [min^{-1}]

Posuv na zub \(f_z \) [mm] je základní jednotkou posuvového pohybu. Je to délka dráhy obrobku za dobu záběru zubu. Posuv na otáčku \(f_n \) je délka dráhy obrobku za dobu jedné otáčky nástroje.

\[f_n = f_z \cdot z \quad [mm] \]

kde: \(z \) = počet zubů (břitů) nástroje

Vzorec pro výpočet posuvové rychlosti:

\[v_f = f_n \cdot n = f_z \cdot z \cdot n \quad [mm \cdot min^{-1}] \]

kde: \(n \) = otáčky nástroje [min^{-1}] (Brychta, 2007)

Fréza je vícebřitý nástroj s břity uspořádanými na válcové, kuželové, čelní, nebo jiné tvarové ploše. Existuje velké množství druhů fréz, které jsou normalizovány. (Ščerbejová, 1993)
Frézovací stroje (frézky) jsou vyráběny a dodávány ve velkém počtu modelů a velikostí. Zpravidla se člení do čtyř základních skupin - konzolové, rovinné, stolové a speciální. Z hlediska řízení pracovního cyklu se rozlišují ručně ovládané frézky a programově řízené frézky. (Humár, 2003)

4 ROZDĚLENÍ MATERIÁLŮ POUŽÍVANÝCH PRO VÝROBU ŘEZNÝCH NÁSTROJŮ

Pro výrobu řezných nástrojů se používají různé kovové (oceli, litiny, slitiny Cu, slitiny Ni, slitiny Ti) i nekovové (keramika, vláknově vyzužené kompozity, atd.) materiály. Břit řezného nástroje musí mít odpovídajícíhouževnatost a současně vysokou tvrdost v oblasti ostří, která nesmí příliš poklesnout ani při vysokých pracovních teplotách.

Obr. 6 Hodnoty vybraných vlastností řezných materiálů (Humár, 2003)
V současnosti se pro výrobu řezných nástrojů používá řada materiálů, a to:

- **nástrojové oceli** - nelegované, legované, rychlořezné, na lité nástroje,
- **slinuté karbidy** - bez povlaků i s tvrdými, otěruvzdornými povlaky,
- **cermety** - včetně povlakovaných,
- **řezná keramika** - včetně povlakované,
- **supertvrdé materiály** - syntetický diamant, kubický nitrid boru.

V současné době, ani v blízké budoucnosti, nelze očekávat objevení nového řezného materiálu, proto se všichni významni výrobci zaměřují spíše na optimální využití již známých materiálů.

Aplikační oblasti materiálů pro řezné nástroje vymezují fyzikální, chemické, tepelné a mechanické vlastnosti. Materiály s vysokou tvrdostí se používají při vyšších řezných rychlostech a malých průřezech třísky (dokončovací metody). Materiály s vysokou houževnatostí lze použít při vyšších posuvových rychlostech (hrubování). (Humár, 2008)

![Diagram oblastí použití řezných materiálů](Obr. 7 Oblasti použití řezných materiálů (Humár, 2003))
4.1 Nástrojové oceli

Velké množství požadavků a jejich různorodost vedly k výrobě mnoha druhů nástrojových ocelí. (Roček, 1973)

4.1.1 Nástrojové nelegované oceli

Jsou vhodné pro ruční nástroje. Pro strojní obrábění se téměř nepoužívají. Neobsahují legovací prvky a jejich vlastnosti určuje pouze obsah uhlíku.

4.1.2 Nástrojové legované oceli

- **manganové oceli** - výsledná odolnost a tvrdost je téměř stejná jako u nelegovaných ocelí. Používají se tam, kde záleží na dodržení tvarové a rozměrové přesnosti (závitníky, ruční výstružníky, měřidla, atd.),

- **chromové oceli** - vynikají řezivostí a odolností proti otěru. Používají se pro nástroje, u kterých se vyžaduje vysoká tvrdost, houževnatost a snadné tepelné zpracování (závitníky, tvarové nože, šroubovité vrtáky, výstružníky, složité protahovací trny a tvarové frézy). Protože si při kalení zachovávají rozměrovou a tvarovou přesnost, jsou vhodné i pro výrobu nejpřesnějších měřidel. Nástroje z chromové oceli jsou vhodné pro obrábění velmi tvrdých materiálů (sklo, mramor a břidlice) i materiálů se špatným odvodem tepla (plasty, tvrdé dřevo),

- **wolframové oceli** - wolfram se často kombinuje s chromem a dalšími prvky. Tvoří více druhů stabilních a tvrdých karbidů. Wolframové oceli si zachovávají tvrdost i při vyšších teplotách. Oceli s obsahem W do 5% s kombinací Cr a V do 2% se používají k výrobě nejkvalitnějších šroubovitých vrtáků, fréz, závitofrezných nástrojů, výstružníků a chirurgických nástrojů. Používají se k obrábění nejtvrdsích materiálů a lepenky, korku, pryže, dřeva apod. (Hluchý, 2001)
4.1.3 Rychlořezné oceli

Rychlořezné oceli jsou v podstatě nástrojové oceli legované s většími přísadami legujících prvků. Kromě dobré řezivosti má rychlořezná ocel i příznivé mechanické vlastnosti (tvrdost, pevnost, houževnatost). Tyto vlastnosti se dobře uplatňují při namáhání nástrojů v řezu. Nástroje z rychlořezných ocelí se používají na obrábění tvrdých ocelí, tvrdých ocelí na odlitky a těžko obrobitelných materiálů. (Roček, 1973)

4.1.4 Oceli na lité nástroje

Obsahem legovacích prvků se podobají rychlořezným ocelím. Používají se k výrobě litých nástrojů, např. fréz, výhrubníků apod. a břitových destiček soustružnických nožů. Vliv legovacích prvků je stejný jako u rychlořezných ocelí, nástroje pouze vykazují nižší houževnatost. (Hluchý, 2001)

4.2 Slinuté karbidy

Slinuté karbidy (dále jen SK) mají nejvyšší modul pružnosti, lomovou houževnatost a ohybovou pevnost. Díky tomu mohou být použity pro těžké přerušované řezy a pro obrábění vysokými posuvovými rychlostmi. (Humár, 2008)

Slinuté karbidy jsou vyráběny práškovou metalurgií z karbidů těžkých kovů:

- **karbidu titanu** - zvyšuje tvrdost a chemickou stálost za vyšších teplot, snižuje pevnost SK v ohybu a zvyšuje jejich křehkost, zvětšuje tepelnou roztažnost a zhoršuje tepelnou vodivost SK,
- **karbidu tantalu** - jeho účinky jsou kvalitativně podobné jako u karbidu titanu, zjemňuje strukturu SK,
• **karbidu wolframu** - zaručuje tvrdost za vysoké teploty, chemickou stálost a odolnost proti opotřebení,

• **nízkotavitelného slinovadla kobaltu** - jako nekarbidotvorný prvek vytváří síťové pojivo mezi zrny karbidů. Karbidy wolframu jsou při slinování v kobaltu rozpustné. Díky tomu vytváří kobalt proti jiným kovům značně houževnaté pojivo a je nositelem pevnosti SK v ohybu. Zvyšováním obsahu kobaltu SK roste tažnost a pevnost, avšak klesá jejich tvrdost. (*Hluchý, 2001*)

4.2.1 Nepovlakované slinuté karbidy

Vzhledem ke svému složení jsou též označovány jako:

- **jednokarbidové** - skupina K,
- **dvojkarbidové** - skupina P,
- **vícekarbidové** - skupina M.

Skupina K je určena pro obrábění materiálů, které vytvářejí krátkou, drobivou tříšku (šedá litina, neželezné slitiny a nekovové materiály). Jedinou strukturní složku této skupiny tvoří karbid wolframu. Ten má za pokojové teploty srovnatelnou tvrdost s většinou ostatních karbidů. S rostoucí teplotou klesá hodnota tvrdosti rychleji než u jiných karbidů. Proto SK této skupiny nejsou vhodné pro obrábění materiálů, tvořících dlouhou tříšku, která mnohem více zatěžuje čelo nástroje.

Obr. 8 Hrubozrnný SK skupiny K (Humár, 2003)
Skupina P je určena pro obrábění materiálů, které tvoří dlouhou třísku (uhlíkové oceli, slitinové oceli a feriticky korozivzdorné oceli). Karbid titanu má za vyšších teplot vyšší tvrdost než karbid wolframu. Tím jsou SK této skupiny vhodné pro obrábění materiálů, které tvoří dlouhou třísku. Naopak jejich nevýhodou je vyšší křehkost a nižší odolnost proti abrazi, ve srovnání s karbidem wolframu.

Obr. 9 SK skupiny P (Humár, 2003)

Skupina M se vyznačuje univerzálním použitím. Slouží k obrábění materiálů tvořících dlouhou a střední třísku, jako jsou tvárné litiny, lité oceli a austenitické korozivzdorné oceli. Řezné síly dosahují středních až vysokých hodnot. Může docházet k vydrolování ostří. SK této skupiny se vyznačují relativně vysokou houževnatostí a mohou se používat pro těžké hrubovací a přerušované řezy. (Humár, 2008)

Obr. 10 SK skupiny M (Humár, 2003)
4.2.2 Povelkované slinuté karbidy

V odborné literatuře můžeme najít tyto vývojové stupně povlakovaných karbidů:

- 1. generace - jednovrstvý povlak (výhradně karbid titanu), tloušťka vrstvy asi 6 µm, špatná soudržnost podkladu a povlaku (nедokonalá technologie výroby - mezi podkladem a povlakem docházelo k tvorbě křehkého eta-karbidu),

- 2. generace - jednovrstvý povlak (karbid titanu, nitrid titanu, karbonitrid titanu), na přechodu mezi podkladem a povlakem nedochází k tvorbě eta-karbidu, díky zdokonalení technologie výroby se zvětšila tloušťka vrstvy na 7 - 13 µm, bez nebezpečí jejich odlupování při funkci nástroje,

![Povlak 2. generace](image)

Obr. 11 Povlak 2. generace (Humár, 2003)

- 3. generace - vícevrstvý povlak (2 až 3, případně více vrstev), mezi jednotlivými vrstvami jsou ostře ohraničené přechody, řazení vrstev odpovídá jejich vlastnostem (první jsou naneseny vrstvy s dobrou přilnavostí k podkladu, ale mají menší odolnost proti opotřebení a jako poslední jsou naneseny vrstvy, které nesou formu, mít dobrou přilnavost k podkladu,
Obr. 12 Povlak 3. generace (Humár, 2003)

- **4. generace** - speciální vícevrstvý povlak (často i nad 10 vrstev a mezivrstev), mezi jednotlivými vrstvami mohou být více či méně výrazné přechody, používané se stejné materiály jako u povlaků 3. generace. (Humár, 2003)

Obr. 13 Povlak 4. generace (Humár, 2003)

Slinuté karbidy se vyrábějí ve tvaru destiček, které mají normalizovaný tvar a rozměr. Destičky se mechanicky upínají nebo pájí na řeznou část nástroje. Mechanicky upínané destičky mají více ostří, které lze využít postupným otáčením. Po otupení všech ostří se již neostří - nelze je dále používat. (Hluchý, 2001)
4.3 Cermety

Název CERMET vznikl složením prvních tří hlásek slov „CERamics (keramika)” a „METal (kov)” a měl by tak popisovat nástrojový materiál, jehož mechanické vlastnosti vykazují výhodnou kombinaci tvrdosti keramiky a houževnatosti kovu. Skutečnost se podstatně liší od předpokladu. (Humár, 2003)

Výchozí materiály pro výrobu cermetů:

- molybden,
- nikl,
- nitrid titanu,
- karbonitrid titanu. (Humár, 2008)

Charakteristickou vlastností cermetů je jejich nízká měrná hmotnost. Ve srovnání se slinutými karbidy jsou tyto hodnoty téměř poloviční. Je to dáno tím, že cermety ve většině případů neobsahují karbid wolframu, který je těžký.

![Obr. 14 Struktura cermetu na bázi karbonitridu titanu (Humár, 2003)](image)
Cermety si díky vysoké tvrdosti, která zůstává zachována i při použití za zvýšených teplot, lépe udržují svůj tvar než slinuté karbidy. Mají vyšší odolnost proti oxidaci a tvorbě nárůstku, chemickou stálost a jsou levnější než slinuté karbidy. Jejich hlavní nevýhodou je nízká houževnatost. Řezné nástroje vyrobené z cermetů se používají pro dokončovací obrábění ocelí, kde jsou schopny vytvořit plochy s velmi nízkou drsností povrchu. Při obrábění korozivzdorných ocelí vykazují vyšší trvanlivost než nepovlakováné slinuté karbidy. Nemohou být používány pro obrábění žáruvzdorných slitin s vysokým obsahem niklu. (Humár, 2003)

Tab. 2 Užití cermetů (Humár, 2003)

<table>
<thead>
<tr>
<th>Nástrojový materiál</th>
<th>Aplikace</th>
<th>Analýza</th>
</tr>
</thead>
<tbody>
<tr>
<td>PD</td>
<td>Obrábění slitin hliníku vysokými řeznými rychlostmi</td>
<td>Lze použít cermety, ale při nižších řezných rychlostech; náklady na jeden břit jsou při jejich použití výrazně nižší.</td>
</tr>
<tr>
<td></td>
<td>Neželezné kovy a nekovové materiály.</td>
<td></td>
</tr>
<tr>
<td>PKNB</td>
<td>Tvrdé obrobky a obrábění šedých litin vysokými řeznými rychlostmi.</td>
<td>Nelze obrábět pomocí cermetů při stejných rychlostech; náklady na jeden břit jsou u cermetů výrazně nižší.</td>
</tr>
<tr>
<td></td>
<td>Vysokorychlostní soustružení a zapichování ocelí a litin.</td>
<td>Cermety jsou univerzálnější a levnější, ale nemohou pracovat při vysokých řezných rychlostech.</td>
</tr>
<tr>
<td>Řezná keramika lisovaná za studena</td>
<td>Soustružení a zapichování tvrdých obrobků, vysokorychlostní dokončovací obrábění ocelí a litin.</td>
<td>Tvrđe obrobky nelze obrábět pomocí cermetů; oceli a litiny nelze obrábět při stejných rychlostech; cermety jsou univerzálnější a levnější.</td>
</tr>
<tr>
<td>Řezná keramika lisovaná za tepla</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Řezná keramika Si_3N_4</td>
<td>Hrubovací a polohrubovací soustružení a frézování šedých litin vysokými řeznými rychlostmi za nepříznivých podmínek.</td>
<td>Pomocí cermetů nelze obrábět šedé litiny při stejnéch řezných rychlostech, ale při středních rychlostech mohou být levnější.</td>
</tr>
<tr>
<td>-------------------------</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Povlakované SK</td>
<td>Obecné použití pro obrábění ocelí (včetně korozivzdorných), šedých litin, atd.</td>
<td>Cermety mohou pracovat při vyšších řezných rychlostech, mají vyšší trvanlivost a jsou levnější při pohrubovacích a dokončovacích operacích.</td>
</tr>
<tr>
<td>Slinuté SK</td>
<td>Houževnaté nástrojové materiály pro nižší řezné rychlosti a různé obráběné materiály.</td>
<td>Cermety mohou pracovat při vyšších rychlostech, zaručují lepší obrobenou plochu.</td>
</tr>
</tbody>
</table>

4.4 Řezná keramika

Keramika je obecně charakterizována jako převážně krystalický materiál, jehož hlavní složkou jsou anorganické sloučeniny nekovového charakteru. Do této definice je zahrnuta nejen tradiční keramika (cihly, cement, porcelán), ale i brousící materiály a řada tzv. nových keramických látek, jako je oxidová keramika, karbidy, boridy, nitridy, ferity, feroelektrika a další. Nová keramika je charakteristická tím, že je vyráběna z poměrně čistých surovin a často z výchozích čistých chemikálií, jako keramika syntetická.

K výraznému zlepšení některých vlastností keramických materiálů došlo v posledních letech díky intenzivnímu výzkumu a vývoji. Díky tomu se podstatně rozšířila možnost aplikace těchto materiálů ve strojírenské výrobě. *(Humár, 2008)*

Keramické materiály slouží pro výrobu vyněnitelných břitových destiček řezných nástrojů. Obvykle jsou děleny následovně:
4.4.1 Oxidická keramika

- čistá,
- polosměsná,
- směsná.

Obr. 15 Oxidická keramika čistá (Humár, 2003)

Obr. 16 Oxidická keramika polosměsná (Humár, 2003)

Obr. 17 Oxidická keramika směsná (Humár, 2003)
4.4.2 Nitridová keramika

![Image of nitridová keramika](image1)

Obr. 18 Nitridová keramika typu sialon (Humár, 2003)

4.4.3 Vyztužená keramika

Jedná se o oxidickou nebo nitridovou keramiku vyztuženou pomocí whiskerů SiC nebo Si₃N₄.

![Image of vyztužená keramika](image2)

Obr. 19 Vyztužená keramika (Humár, 2003)

Nejnovější trendy ve vývoji řezných keramik patří smíšeným oxidicko-nitridovým keramikám. Tyto materiály mají poměrně vysokou houževnatost, kterou si zachovávají i při vysokých teplotách. Jejich současná aplikace je omezena na soustružení a frézování šedých litin, někdy se používají pro soustružení superslitin. *(Humár, 2003)*
4.5 Supertvrdé řezné materiály

Pod název supertvrdé řezné materiály můžeme zahrnout dva synteticky vyrobené materiály, a to:

4.5.1 Diamant

Diamant je průmyslově vyráběn z velmi čistého grafitu. Má poměrně nízkou teplotní stálost (nad 700 °C se mění na grafit), proto nesmí být používán pro obrábění materiálů na bázi železa. Při obrábění diamantovými nástroji je doporučeno chlazení běžnými procesními kapalinami bez speciálních požadavků. Jediný požadavek je, aby byla kapalina na místo řezu dodávána pod vysokým tlakem. (Humár, 2008)

Diamant je nejtvrdší materiál a nelze jej nahradit ani keramickými řeznými materiály, ani slinitými karbidy. Technické diamanty jsou přírodní, nebo syntetické (uměle vyrobené). Syntetické diamanty jsou levnější než přírodní a vykazují lepší mechanické vlastnosti (mají všech osách stejnou pevnost). Nevýhodou jsou relativně malé krystaly, nevhodné pro mechanické upínání. Tato nevýhoda byla odstraněna výrobou tzv. kompaktů (vrstva syntetického polykrystalického diamantu, o tloušťce 1 mm, nanášená práškovou metalurgií na podložku z houževnatého slinitého karbidi), které se pájí na řeznou část nástroje nebo jsou částí vyměnitelných břitových destiček. (Hluchý, 2001)

Obr. 20 Polykrystalický diamant (Humár, 2003)
4.5.2 Kubický nitrid boru

Kubický nitrid boru je průmyslově vyráběn z nitridu boru. Používá se pro obrábění kalených ocelí a tvrzených slitin, kde s výhodou nahrazuje operace broušení. (Humár, 2008)

Vlastnosti kubického nitridu boru, zejména tvrdost, se podobají vlastnostem diamantu. Jako řezný materiál se kubický nitrid boru používá k výrobě brousicích nástrojů. Kompakty z polykrystalického kubického nitridu boru se vyrábějí podobnou technologií jako kompakty z polykrystalických diamantů. Nástroji s kompakty z kubického nitridu boru lze obrábět velmi tvrdé materiály. Teplota řezání může dosáhnout hodnoty 1400 až 1600 °C aniž by došlo ke změně jeho vlastností. (Hluchý, 2001)

Obr. 21 Polykrystalický kubický nitrid boru (Humár, 2003)

Obr. 22 Postup výroby vyměnitelné břitové destičky z PKNB (Humár, 2003)
5 OPOTŘEBENÍ ŘEZNÝCH NÁSTROJŮ

Pod pojmem opotřebení (otupování) nástroje se rozumí postupně probíhající proces, při kterém se zvětšuje poloměr zaoblení ostří, zhoršuje se drsnost plochy čela a hřbetu v místech styku s třískou a plochou řezu a méní se postupně geometrie břitu. K opotřebení břitu nástroje dochází:

- otěrem stykových ploch,
- křehkým lomem,
- plastickou degradací. (Hluchý, 2001)

5.1 Opotřebení otěrem

Otěr je složitý, fyzikálně chemický proces. Podle příčiny rozlišujeme otěr abrazivní, adhezní, difuzní a chemický.

- abrazivní otěr - nastává v důsledku brusných účinků tvrdých částic třísky v případě, že tvrdost mikročástic třísky je vyšší než tvrdost částic materiálu břitu. Může ho způsobit i zpevnění částic plastickou degradací,
- adhezní otěr - vzniká působením vysokých místních tlaků vlivem nerovností pracovních ploch břitu. Vznikají bodové mikrosvary podobně jako při tvoření nárůstku. Adhezní otěr nastává většinou u nástrojů z uhlíkových nebo rychlořezných ocelí,
- difuzní otěr - nastává v důsledku vzniku defektivní vrstvy s narušenou krystalickou strukturou na povrchu břitu do hloubky 5 až 20 µm. Tato vrstva vznikne při difuzi (samovolném pronikání prvků z místa vyšší koncentrace do místa nižší koncentrace) některých prvků, při dosažení disociační teploty (teplota, při které se struktura kovů rozpadá na atomy, které jsou potom schopny difuze). Nastává u nástrojů ze slinutých karbidů,
• **chemický otěr** - nastává v důsledku vzniku defektní vrstvy na povrchu břitu působením oxidace nebo jiných chemických změn. *(Ščerbejová, 1993)*

![Obr. 23 Opotřebení nástroje – otěr na hřbetu (http://www.mmspektrum.com)](image)

Obr. 23 Opotřebení nástroje – otěr na hřbetu (http://www.mmspektrum.com)

![Obr. 24 Opotřebení nástroje – nárůstek (http://www.mmspektrum.com)](image)

Obr. 24 Opotřebení nástroje – nárůstek (http://www.mmspektrum.com)

5.2 Opotřebení křehkým lomem

Křehké lomy se nejčastěji objevují u slinutých karbidů nebo keramických materiálů při okamžitém zvýšení řezného odporu vlivem tvrdého vměstku nebo tepelným rázem, přetížením břitu v ohybu, při práci nástroje přerušovaným řezem. Křehký lom je podporován mikroskopickými trhlinkami břitu, vznikajícími neopatrným ostřením nástroje. Velikost lomu závisí na druhu brousícího kotouče, kterým je nástroj ostřen, a na používaných řezných podmínkách. *(Hluchý, 2001)*
5.3 Opotřebení plastickou deformací

Nastává při plastické deformaci povrchových vrstev nástroje, která může být vyvolána teplotou a mechanickým zatížením. Plasticky deformovaná vrstva se lavinovitě posouvá. Může nastat např. při obrábění měkkých materiálů nebo u kovů při vyšších rychlostech. Vlivem malé tepelné vodivosti obráběného materiálu se hromadí teplo v nástroji, které spolu s tlakem vyvolává plastický stav povrchových vrstev břitu. (Ščerbejová, 1993)
5.4 Formy opotřebení

Opotřebení břitu se projevuje nejčastěji tvořením výmolu na čele a nepravidelnou ploškou na hřbetě, nebo méně často tvořením stupníku. Opotřebením se mění tvar a geometrie břitu. Za určitých podmínek probíhá opotřebování jen na čele, na čele i na hřbetě, nebo jen na hřbetě. To závisí na materiálu obrobku, nástroje a řezných podmínkách. Otupení na čele je nutné sledovat při hrubování vzhledem k nákladům na ostření nástroje. Otupení na hřbetě má vliv na přesnost obrobku při obrábění na čisto. Při vysokých rychlostech a posucech dochází zejména k opotřebení čela nástroje, při malých rychlostech a posucech k opotřebení hřbetu. Otupení na hřbetě probíhá v závislosti na čase ve třech charakteristických úsecích. V prvním úseku narůstá opotřebení velmi rychle, což se vysvětluje vyrovnáním nerovností břitu vzniklých při ostření a vysokými tlaky. Po vyhlazení ostří a vyrovnání tlaků na průměrné hodnoty probíhá otupení rovnoměrně. Po dosažení jisté meze otupení, kdy pevnost a tvrdost břitu poklesla, se intenzita otupení neustále zvětšuje a končí lavinovým otěrem. Nástroj se považuje za otepěný, jestliže se dosáhlo některého kritéria otupení. (Hluchý, 2001)

Obr. 27 Opotřebení nástroje – výmol na čele (http://www.mmspektrum.com)
6 EXPERIMENTÁLNÍ ČÁST

Cílem experimentální části je analyzovat opotřebení řezného nástroje. Pro daný experiment je zvolena technologie frézování na svislé konzolové frézce. Byly porovnávány dva druhy čelních fréz:

- **fréza HSS** - jedná se o frézu vyrobenou z nástrojové oceli třídy 19. Tento materiál je klasickým zástupcem pro výrobu nástrojů určených pro strojní obrábění,
- **destičky ze slinutého karbidu ADMX 8230** - jedná se o zástupce dvoukarbidových materiálů určených pro strojní obrábění.

Řezné podmínky byly zvoleny pro oba nástroje stejné (viz. tab. 3). Důvodem je srovnatelnost jednotlivých měření. U slinutých karbidů lze ovšem volit vyšší řeznou rychlost.

Tab. 3 Řezné podmínky pro frézování

<table>
<thead>
<tr>
<th>Frézy</th>
<th>Otáčky [min⁻¹]</th>
<th>Posuv na zub [mm*zub]</th>
<th>Hloubka řezu [mm]</th>
<th>Řezná rychlost [m*min⁻¹]</th>
</tr>
</thead>
<tbody>
<tr>
<td>HSS</td>
<td>355</td>
<td>0,009</td>
<td>1</td>
<td>70,26</td>
</tr>
<tr>
<td>ADMX</td>
<td>355</td>
<td>0,009</td>
<td>1</td>
<td>70,26</td>
</tr>
</tbody>
</table>

6.1 Metodika hodnocení opotřebení nástroje

Opotřebením nástroje se rozumí změna geometrie řezných úhlů na daném nástroji. Tento fakt má za následek rapidní pokles kvality obrobené plochy. Jedná se tedy o zvýšení drsnosti povrchu daného výrobku. Pro hodnocení opotřebení řezného nástroje bylo tedy zvoleno měření drsnosti obrobené plochy.
6.2 Polotovar pro odebírání třísky

Z hlediska zvýšení opotřebení nástroje byla použita ocel 14 260, která byla normali-
začně žíhána. Rozměry polotovaru jsou 50×100×10 mm. Na jeden řez bylo tedy ode-
bráno 5000 mm\(^3\) základního materiálu.

6.3 Měření drsnosti

Drsnost byla měřena drsnoměrem Surftest-SJ201. Toto měření bylo provedeno po
každém cyklu odebírání třísky. Jednalo se o podélné měření ve směru rotace nástroje.

6.4 Tepelné zpracování obrobených vzorků

Ocel 14 260 patří do skupiny uhlíkových ocelí s max. obsahem uhlíku do 0,5%. Jed-
ná se o materiál, který je určen jak pro tepelné zpracování, tak i pro tváření za studena.
Po této technologii je vždy zařazeno normalizační žíhání ke snížení vnitřního pnutí.
Normalizačním žíháním se mírně zvýší tvrdost daného výrobku. Tento aspekt byl využit
pro zvýšení abrazivního účinku na řezný nástroj.

Technologický postup:

- připravené vzorky byly ohřáty v muflové peci MPO-05 na teplotu 870 °C (50 °C
 nad A\(_{c3}\)),
- výdrž na této teplotě byla stanovena na 2 hodiny čistého času (bez prodlevy),
- ochlazení z normalizační teploty bylo provedeno na klidném vzduchu.
Tepelné zpracování kovů patří mezi základní prvky ve strojírenské výrobě. V závislosti na množství uhlíku v materiálu a rychlosti ochlazování může základní materiál zvýšit svoji původní tvrdost až na šesti násobek. Jak je patrné z obr. 28, mezi základní strukturní fáze po normalizačním žíhání patří ferit a perlit. Při zvýšení rychlosti ochlazování dochází k značné disperzitě perlitických lamel, což se projevilo u daného materiálu.

6.5 Měření tvrdosti obráběcích materiálů

Obr. 28 Struktura oceli 14 260 po normalizačním žíhání
Tab. 4 Hodnoty tvrdosti měřených materiálů

<table>
<thead>
<tr>
<th>Frézy + základní materiál</th>
<th>Měření č. 1</th>
<th>Měření č. 2</th>
<th>Měření č. 3</th>
<th>Měření č. 4</th>
<th>Měření č. 5</th>
<th>Průměr</th>
</tr>
</thead>
<tbody>
<tr>
<td>HSS</td>
<td>59</td>
<td>60</td>
<td>60</td>
<td>58</td>
<td>60</td>
<td>59</td>
</tr>
<tr>
<td>ADMX</td>
<td>72</td>
<td>72</td>
<td>73</td>
<td>72</td>
<td>72</td>
<td>72</td>
</tr>
<tr>
<td>Základní materiál</td>
<td>7</td>
<td>5</td>
<td>6</td>
<td>6</td>
<td>5</td>
<td>6</td>
</tr>
</tbody>
</table>

Obr. 29 Tvrdoměr Lucznik 012Š

Měření tvrdosti bylo provedeno jak v oblasti samotného břitu, tak i v upínací části. Jelikož se jedná o materiály, které jsou homogenní v celém průřezu, nedochází k žádným rozdílům naměřených hodnot v závislosti na měřeném místě viz tab. 4.
6.6 Hodnocení opotřebení použitých fréz

Pro zkoušku byly použity nové břitové destičky ADMX od firmy Pramet a naostřená válcová fréza Narex 63x40 HSS viz obr. 30.

K získání drsnosti byl zvolen následující technologický algoritmus:

- realizace tepelného zpracování zkušebních vzorků,
- nastavení požadovaných hodnot na konzolové frézce (otáčky, řezná rychlost),
- odběr 1 mm materiálu v pěti cyklech,
- měření drsnosti digitálním drsnoměrem Surftest-SJ201 viz obr. 4.

Znaměřených hodnot je zřejmé, že v prvním intervalu odebírání třísky dochází ke zvýšenému opotřebení. Tento aspekt je dán otřepem na nástroji po opětovném ostření. Jak je patrné z metalografického pozorování, na nástroji zůstávají značné rýhy, po brusné kotouči viz obr. 33. Pro zlepšení kvality obráběné plochy je zapotřebí doplnit po hrubém ostření následnou operaci broušení tzv. finální, s vyšší zrnitostí brusného kotouče.
Tab. 6 Drsnosti plochy obrobené frézou ADMX

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ADMX</td>
<td>1,02</td>
<td>1,02</td>
<td>1,03</td>
<td>1,02</td>
<td>1,02</td>
<td>1,02</td>
<td>1,02</td>
</tr>
<tr>
<td></td>
<td>1,00</td>
<td>1,04</td>
<td>1,03</td>
<td>1,03</td>
<td>1,02</td>
<td>1,02</td>
<td>1,02</td>
</tr>
<tr>
<td></td>
<td>1,05</td>
<td>1,02</td>
<td>1,04</td>
<td>1,04</td>
<td>1,05</td>
<td>1,05</td>
<td>1,04</td>
</tr>
<tr>
<td></td>
<td>1,10</td>
<td>1,07</td>
<td>1,05</td>
<td>1,07</td>
<td>1,09</td>
<td>1,09</td>
<td>1,07</td>
</tr>
<tr>
<td></td>
<td>1,08</td>
<td>1,10</td>
<td>1,11</td>
<td>1,10</td>
<td>1,09</td>
<td>1,09</td>
<td>1,09</td>
</tr>
</tbody>
</table>

Obr. 32 Grafické znázornění změny drsnosti povrchu vzorků

Obr. 33 Naostřená fréza HSS před zkouškou
Pro kontrolu opotřebení nástroje byly zhotoveny makro fotografie (zvětšení 10×). Jak je patrné z obr. 33 až 36 u obou nástrojů dochází k degradaci ostří. Jedná se o destruktivní proces, který vede ke snížení kvality obráběné plochy. Z důvodu malého opotřebení ovšem nelze analyzovat změnu řezných úhlů především u slinutého karbidu ADMX. Realizace tohoto měření ovšem není předmětem předložené práce. Tyto dílčí výsledky slouží pouze k vyhodnocení změny povrchu obráběné plochy.
6.7 Diskuse

Opotřebení obráběcích nástrojů patří mezi základní problematiku strojírenské výroby. Současným trendem je vývoj technických materiálů, které snesou nejen vysoké řezné rychlosti, ale rovněž i značné dynamické namáhání.

V experimentální části bakalářské práce je dle reálného měření jasně prokázán vliv změny geometrie nástroje v důsledku opotřebení na drsnost obrobené plochy. Fréza HSS vyrobená z oceli třídy 19 ani při renovačním ostření nebyla schopna dosáhnout lepších výsledků R_a než 3,46 µm. V první části odebirání třísky se zde projevil i zvýšený nárůst z důvodu tzv. usazení ostří. Celkově lze konstatovat, že po odběru 25 mm v daném průřezu se kvalita obrobené plochy snížila cca o 1 µm. Po tomto skokovém nárůstu lze ovšem předpokládat ustálení dle charakteru opotřebení. Opotřebení tohoto nástroje charakterizují obr. 33 až 34.

Břitové destičky vyrobené ze slinutých karbidů slinovací metodou dosáhly mnohem lepších výsledků drsnosti povrchu než fréza HSS. I když tyto destičky nejsou již po slinování nijak obráběny, nenastává zde problém s otřepem v břitové části. Ostří tvoří hladkou plochu, která je schopna obrobit podkladový materiál na drsnost cca R_a 1 µm. Odběr materiálu při frézování byl naprosto plynulý a změna drsnosti povrchu se pohybovala cca od 0,02 do 0,09 µm. Opotřebení těchto břitových destiček je naprosto zanedbatelné viz obr. 35 až 36.

Jedním z kritérií řezného nástroje je ovšem pořizovací cena a provozní náklady. Cenová relace břitových destiček s upínací hlavou je cca 10× vyšší než pořizovací náklady na frézu stejného průměru vyrobeného z rychlořezné oceli.
7 ZÁVĚR

Současným trendem v oblasti třískového obrábění je maximalizovat řezné rychlosti s minimální časovou prodlevou na výměnu obrobku i řezného nástroje. Oblast výzkumu a vývoje je zaměřena především na povlakované materiály. Jedná se o skloubení houževnatého nosného jádra obráběcího nástroje s vysoce pevným a odolným vrchním povlakem. Tyto povlaky jsou tvořeny především na bázi nitridů.

Druhá část práce je zaměřena na technické materiály používané pro výrobu řezných nástrojů. Materiály jsou rozděleny do skupin, které jsou následně popsány. Jak již bylo řečeno v úvodu, materiály pro výrobu řezných nástrojů prošly značným vývojovým cyklem. Jedná se o materiály na bázi rychlořezných ocelí až po syntetické diamanty. Technická praxe ovšem vyžaduje výrobu řezných nástrojů, u nichž je využito maximální řezné rychlosti i rychlosti posuvu.

V závěru bakalářské práce je proveden experiment se zaměřením na opotřebení řezných nástrojů. Touto analýzou byl jednoznačně prokázán vliv řezných podmínek na drsnost obrobené plochy.
8 SEZNAM POUŽITÉ LITERATURY

http://www.mmspektrum.com
9 SEZNAM OBRÁZKŮ

Obr. 1 Plochy na obrobku (Humár, 2003) ... 10
Obr. 2 Hlavní a posuvový pohyb u vybraných metod obrábění (Humár, 2003) 12
Obr. 3 Základní práce na soustruhu (Humár, 2003) .. 14
Obr. 4 Válkové frézování: a) nesousledné, b) sousledné (Brychta, 2007) 17
Obr. 5 Čelní frézování (Humár, 2003) ... 17
Obr. 6 Hodnoty vybraných vlastností řezných materiálů (Humár, 2003) 19
Obr. 7 Oblasti použití řezných materiálů (Humár, 2003) .. 20
Obr. 8 Hrbozrný SK skupiny K (Humár, 2003) .. 23
Obr. 9 SK skupiny P (Humár, 2003) .. 24
Obr. 10 SK skupiny M (Humár, 2003) .. 24
Obr. 11 Povlak 2. generace (Humár, 2003) ... 25
Obr. 12 Povlak 3. generace (Humár, 2003) ... 26
Obr. 13 Povlak 4. generace (Humár, 2003) ... 26
Obr. 14 Struktura cermetu na bázi karbonitridu titanu (Humár, 2003) 27
Obr. 15 Oxidická keramika čistá (Humár, 2003) ... 30
Obr. 16 Oxidická keramika polosměsná (Humár, 2003) .. 30
Obr. 17 Oxidická keramika směsná (Humár, 2003) .. 30
Obr. 18 Nitridová keramika typu sialon (Humár, 2003) .. 31
Obr. 19 Vyztužená keramika (Humár, 2003) ... 31
Obr. 20 Polykrystalický diamant (Humár, 2003) ... 32
Obr. 21 Polykrystalický kubický nitrid boru (Humár, 2003) 33
Obr. 22 Postup výroby vyměnitelné břitové destičky z PKNB (Humár, 2003) 33
Obr. 23 Opotřebení nástroje – otěr na hřbetu (http://www.mmspektrum.com) .. 35
Obr. 24 Opotřebení nástroje – nárůstek (http://www.mmspektrum.com) 35
Obr. 25 Opotřebení nástroje – vylomení destičky (http://www.mmspektrum.com) . 36
Obr. 26 Opotřebení nástroje – plastická deformace (http://www.mmspektrum.com) 36
Obr. 27 Opotřebení nástroje – výmol na čele (http://www.mmspektrum.com) 37
Obr. 28 Struktura oceli 14 260 po normalizačním žíhání .. 40
Obr. 29 Tvrdoměr Lucznik 012Š ... 41
Obr. 30 Nástroje pro zkoušku opotřebení ... 42
Obr. 31 Výhodnocovací jednotka drsnosti povrchu SurfTest-SJ201 43
Obr. 32 Grafičké znázornění změny drsnosti povrchu vzorků 44
Obr. 33 Naostřená fréza HSS před zkouškou ... 44
Obr. 34 Otupená plocha po zkoušce fréza HSS ... 45
Obr. 35 Destička slinutý karbid ADMX před zkouškou ... 45
Obr. 36 Destička slinutý karbid ADMX po zkoušce ... 45
10 SEZNAM TABULEK

Tab. 1 Jakost povrchu a přesnost rozměrů při soustružení (Ščerbejová, 1993).......... 15
Tab. 2 Užití cermetů (Humár, 2003)... 28
Tab. 3 Řezné podmínky pro frézování... 38
Tab. 4 Hodnoty tvrdosti měřených materiálů ... 41
Tab. 5 Drsnosti plochy obrobené frézou HSS... 43
Tab. 6 Drsnosti plochy obrobené frézou ADMX.. 44