Palivové články pro motorová vozidla

Bakalářská práce

Vedoucí práce: Ing. Jiří Čupera, Ph.D.

Vypracoval: Miroslav Matějík

Brno 2012
PROHLÁŠENÍ

Prohlašuji, že jsem diplomovou práci na téma palivové články pro motorová vozidla vypracoval samostatně a použil jen pramenů, které cituji a uvádím v přiloženém seznamu literatury.

Bakalářská práce je školním dílem a může být použita ke komerčním účelům jen se souhlasem vedoucího diplomové práce a děkana Agronomické fakulty Mendelovy univerzity v Brně.

dne:………………………………………………

podpis:…………………………………………
PODĚKOVÁNÍ

Na tomto místě bych rád poděkoval vedoucímu bakalářské práce panu Ing. Jiřímu Čupěroví, Ph.D. za jeho ochotný přístup, rady a vedení této bakalářské práce.
ABSTRAKT


Klíčová slova: palivový článek, pohon na vodík, hybridní pohon, výroba vodíku, skladování vodíku, ekonomika pohonu na vodík.

ABSTRAKT

This thesis focuses on the use of fuel cells for motor vehicles. It describes different types of fuel cells, problems with their use in motor vehicles, their benefits and obstacles. The process of obtaining energy can be simply described as an inversion of electrolysis. Electrolysis of water occurs when the water is decomposed into oxygen and hydrogen by the electric current. The transition of these two elements into gas is an energy consuming process. Fuel cells allow to convert this energy back into the electric energy simultaneously with the creation of heat while the water is formed. This released electrical energy together with an electric motor and control systems is the power for motor vehicles.

Keywords: fuel cell, hydrogen power, hybrid, hydrogen production, hydrogen storage, hydrogen power economy.
# OBSAH

1 ÚVOD........................................................................................................................... 7  
2 CÍL PRÁCE................................................................................................................ 8  
3 POHON NA VODÍK.................................................................................................... 8  
   3.1 Vodíkové hospodářství...................................................................................... 9  
   3.1.1 Výroba vodíku............................................................................................. 10  
   3.1.2 Distribuce vodíku ....................................................................................... 14  
   3.1.3 Čerpační stanice na vodík.......................................................................... 15  
   3.2 Vodík jako palivo ........................................................................................... 16  
   3.3 Skladování vodíku ......................................................................................... 17  
   3.3.1 Plynový vodík............................................................................................ 18  
   3.3.2 Kapalný vodík ........................................................................................... 19  
   3.3.3 Hydridy kovů .............................................................................................. 20  
   3.3.4 Alternativní možnosti skladování ............................................................ 21  
   3.4 Bezpečnost vodíkového vozidla ................................................................... 22  
   3.5 Ekonomika vodíkového pohonu ................................................................... 23  
4 PALIVOVÝ ČLÁNEK............................................................................................... 25  
   4.1 Princip funkce palivového článku ............................................................... 25  
   4.2 Princip činnosti a chemických reakcí ......................................................... 26  
   4.3 Palivo ............................................................................................................. 27  
   4.3.1 Konstrukce elektrod ................................................................................ 27  
   4.3.2 Katalyzátory .............................................................................................. 28  
   4.4 Soubor palivových článků ............................................................................ 28  
   4.5 Rozdělení palivových článků ........................................................................ 30  
   4.5.1 AFC Alkalický palivový článek ................................................................ 31  
   4.5.2 PEMFC Články s tuhými polymery ............................................................ 33  
   4.5.3 DMFC Články s methanolovým palivem ................................................... 35  
   4.5.4 PAFC Články s kyselinou fosforečnou ...................................................... 35  
   4.5.5 MCFC Uhličitanové palivové články ......................................................... 36  
   4.5.6 SOFC – Keramický palivový článek ......................................................... 38  
   4.6 Účinnost palivových článků ........................................................................... 40  
   4.6.1 Stupeň využití paliva $U_f$ ...................................................................... 40
4.6.2 Maximální teoretická účinnost $\eta_{\text{max}}$ ................................................................. 41
4.6.3 Napěťová účinnost $\eta_V$ .................................................................................. 42
4.6.4 Celková elektrochemická účinnost palivového článku $\eta_{\text{FC}}$ ...................... 43
4.6.5 Účinnost celého systému s palivovým článkem .................................................... 43

5 HYBRIDNÍ POHON S PALIVOVÝMI ČLÁNKY .................................................................. 44

5.1 Hybridní vozidlo ........................................................................................................... 45
  5.1.1 Sériové hybridní vozidlo ...................................................................................... 45
  5.1.2 Paralelní hybridní vozidlo .................................................................................. 46
  5.1.3 Hybridní vozidlo s palivovými články ................................................................. 47

5.2 Hlavní části pohonu vozidla s palivovými články ..................................................... 47
  5.2.1 Systém s palivovým článkem PEMFC .................................................................. 47
    5.2.1.1 Vodíkový systém palivového článku PEMFC ............................................. 48
    5.2.1.2 Reformace paliva při použití palivového článku PEMFC ....................... 49
  5.2.2 Elektromotor ......................................................................................................... 49
  5.2.3 Výkonová řídící elektronika ................................................................................ 50
  5.2.4 Akumulátor ......................................................................................................... 50
  5.2.5 Výkonový kondenzátor ........................................................................................ 50

5.3 Přínosy a překážky palivových článků u motorových vozidel .................................... 51

5.4 Praktické využití palivových článků u motorových vozidel ........................................ 53
  5.4.1 TRIHYBUS ......................................................................................................... 53
  5.4.2 Mercedes-Benz Citaro FuelCELL ....................................................................... 53
  5.4.3 New Holland Hydrogen ...................................................................................... 54

6 ZÁVĚR ............................................................................................................................. 55

7 SEZNAM POUŽITÉ LITERATURY .............................................................................. 56

8 SEZNAM OBRÁZKŮ ....................................................................................................... 58

9 SEZNAM TABULEK ....................................................................................................... 59
(Zadání)
1 ÚVOD


Celkový vývoj palivových článků u automobilů má za sebou již dlouhou dobu. Jeho rozšíření brzdí množství konstrukčních faktorů. Především se jedná o drahou výrobu samotných palivových článků a následné bezpečné skladování paliva, jeho distribuci a nakonec i budování infrastruktury palivových stanic, které budou nabízet nové palivo ve formě vodíku.

Určitě je k zamyšlení proč by do budoucna měly být automobily s touto koncepcí vyráběny? Jedná se především o účinnost přeměny energie uložené v palivu v mechanickou práci, která dosahuje mnohem lepších parametrů než u spalovacích motorů. Zároveň se zohledňuje šetrenost k životnímu prostředí, což znamená nízké až nulové emise palivových článků za předpokladu vhodného zdroje k jeho výrobě. Příkladem odpadního produktu chemického spalování vodíku je voda.

Vodík může být vyráběn mnoha způsoby, ze širokého spektra vstupních zdrojů. Samotná výroba vodíku by měla být především zaměřena na snížení celkového podílu emisí při jeho výrobě. Způsob výroby může být od reformace paliva přes parciální oxidaci biomasy, vysokoteplotní elektrolýzu jaderných elektráren IV. stupně, až po využití odpadních produktů vznikajících například při výrobě chlóru. Tudy by mohla vést cesta k jeho levné a čisté výrobě.

Mezi velké překážky patří samotné skladování vodíku. Vysoké tlaky při plynné formě, případně zkapalňování vodíku za nízkých teplot, a to i při uskladnění, si žádá využití nových technologií při výrobě nádrží a konstrukci infrastruktury pro tento typ paliva.

Následně samotná koncepce vozidla musí být rozvržena tak, aby přechod od automobilů se spalovacím motorem k automobilům s palivovými články uživatele neznevýhodnila, ale míle překvapila a byla srovnatelná s cenovou hladinou současně vyráběných vozidel.
2 CÍL PRÁCE

Práce si klade za cíl upřesnit a charakterizovat problematiku palivového článku, na bázi vodíku. Problematika palivových článků je ovšem značně rozsáhlé téma. Autor si proto neklade požadavek podrobného rozboru, taková práce by byla značně rozsáhlá, nýbrž cílem je podat ucelený přehled problematiky ve formě „review“.

Vedle samotného přehledu je cílem i podrobnější rozbor základních charakteristik (například chemických reakcí, typů elektrod, elektrolytu a pod.) nejčastěji užívaných palivových článků a stejně tak i problematika pohonu vozidla za pomocí vodíku.

3 POHON NA VODÍK

Motorová vozidla jsou jedním z významných vynálezů lidstva, slouží lidem již řadu let a lidé si každodenní život bez nich nedokáží ani představit. Problémem může být budoucnost dosavadní soustavy automobilových vozidel, která je založena na koncepci spalovacích motorů s využitím fosilních paliv. Jedná se o zdroj omezeného rázu a tak se musí počítat s jeho možným vyčerpáním. Je tedy na řadě začít uvažovat o nových budoucích technologiích, kterými lze omezit a případně i nahradit dosavadní spalování fosilních paliv. Budoucnosti jsou tedy alternativní pohony motorových vozidel.

Za alternativní palivo budoucnosti lze považovat i vodík – paliva jakožto nosiče energie, jehož zásoby ve vodě jsou téměř nevyčerpatelné. Pro jeho masové rozšíření v dopravě je ale nutné mít k dispozici relativně levný zdroj energie a potřebnou infrastrukturu k jeho výrobě, distribuci a tankování.

Vodík je teoreticky možné vyrábět i přímo ve vozidlech za pomocí reformace stávajících fosilních paliv tj. Štěpením molekul uhlíkového paliva. Tím by bylo možné jeho zavedení již dnes. Výrobců automobilů se ale tohoto kroku zdráhají a dávají přednost čisté formě jeho přímého tankování. Zatím tedy není zcela jasná, která z technologií výroby vodíku je nejvýhodnější, jak lze vodík skladovat ve velkém, jak ho nejlépe bez nebezpečí výbuchu dopravovat na velké vzdálenosti, či jaký zdroj přeměny využít. Naopak jasně je, že se oblast vodíkových technologií dostala do popředí zájmu nejen vědců, ale i politiků kvůli svému potenciálu nahradit klasická paliva. Už jen skutečnost, že vodík lze vyrobit ze širokého spektra surovin, za pomocí mnoha druhů energetických zdrojů znamená, že cesta je vykročena správným směrem.
Výroba vodíku elektrolýzou vody za použití elektrické energie vyrobené z obnovitelných zdrojů staví vodík k nejčistším palivům, kterých lze nabídnout. Z hlediska snižování emisí skleníkových plynů je podstatné, že automobily jezdící na vodík, oproti spalovacím motorům využívajícím fosilních paliv, nevytváří žádné emise oxidu uhličitého. Použití čistého vodíku jako palivové složky při využití palivových článků tedy nepřináší žádné emise výfukových plynů v podobě CO₂, HC, NOₓ a dalších. Problémy s bezpečností přímého spalování vodíku a cena vozidel jsou však hlavní důvody, proč se současný vývoj využití vodíku v automobilce orientuje spíše na palivové články, kde se vodík využívá na výrobu elektrické energie. [2]

Využití vodíku není omezeno pouze na palivové články, vodík je vhodné palivo i pro klasické spalovací motory. Díky mnohem menším nákladům na úpravu spalovacích motorů pro provoz na vodíkové palivo v porovnání s palivovými články se varianta spalování vodíku jeví jako možné přechodně preferovanější řešení do doby výrazného snížení finančních nákladů výroby palivových článků nebo do zvýšení jejich účinnosti a návratnosti při levnějším provozu.

Vodík je tedy možné používat ve vozidle jako palivo buď:

a) jako zdroj elektrické energie v palivovém článku elektromobilu nebo

b) přímo ve spalovacím motoru.

Systém používající palivových článků je v principu elektromobil využívající baterie pro zásobování palubní sítě elektrickou energií a palivového článku pěřebírajícího funkci elektrochemického akumulátoru s účinností vyšší než 50% a neustálým provozem, pokud je vozidlo v chodu.

Ačkoliv jsou vozidla s palivovými články stále ve vývoji a jejich komerční rozšíření se neustále potýká s překážkami, jeví se jako nadějná alternativa pro budoucnost – a to nejen v motorovém průmyslu. Postupem času určitě dojde k dalšímu navýšení jejich účinnosti a ve srovnání s ostatními možnostmi alternativních pohonů mohou být stále více vyhledávány, přičemž koncepce dosavadních spalovacích motorů bude stále více na ústupu.

### 3.1 Vodíkové hospodářství

Vodíkové hospodářství je možné charakterizovat jako technologické zařízení pro uspokojování energetických potřeb na bázi vodíku. Nicméně vodík není klasické palivo, ale spíše jen nosič energie. V praxi to znamená, že jej nelze v přírodě levně a efektivně těžit, neboť vodík se v elementární formě na Zemi prakticky nevyskytuje. Vodík je zapo-
třebí s nemalou ztrátou energie vyrábět. Vodíkové technologie jsou tedy pouze tak ekologicky čisté, jak čisté jsou primární zdroje energie a suroviny, které jsou při výrobě vodíku použity. [11]

K nejperspektivnějšímu oblastem jeho využití patří zcela jistě doprava. Nalezení alternativního způsobu spalování fosilních paliv je v současné době motivováno více požadavky. Vedle snahy snížit dopady spalování uhlovodíkových paliv a tím eliminovat škodlivé emise, vystupuje zejména potřeba snížit závislost na dodávkách ropy, jejichž zásoby jsou do budoucna omezeny.

3.1.1 Výroba vodíku


![Obrázek 1: Graf zastoupení zdrojů výroby vodíku v celosvětovém měřítku pro rok 2008. [8]](image)

Využití takto vyrobeného vodíku by lokálně mohlo snížit produkci mnoha škodlivých látek, globálně by ale tato cesta mohla vést k méně hospodárnému využívání primárních zdrojů energie, tedy i k nárůstu produkce oxidu uhličitého.

Z ekonomického hlediska jsou pohledy na výrobu vodíku stávající technologií následující. Při výrobě 1 kWh vodíku za pomocí elektrolýzy je potřeba 1,53 kWh elektrické energie. Lépe vychází parní reformace zemního plynu, kde je sice hodnota spotřeby ener-
gie uvádí přibližně stejná, přesněji 1,43 kWh, ale z finančního hlediska zatím znamená mnohem levnější výrobu vodíku.

Vhodnější možností se jeví využití obnovitelných zdrojů, případně nové generace jaderných reaktorů, kde se bude vodík získávat za pomoci vysokoteplotní elektrolýzy. Jejich zavedení je ale otázkou budoucnosti a dříve jak roku 2025 s nimi není počítáno.

Proto se věda zaměřuje také na nové technologie – například na speciální bakterie, které za pomocí umělé fotosyntézy produkují vodík a keramické nanočlánky katalyticky rozkládající vodní páru za vysokých teplot.

**Mezi nejvíce rozšířené a užívané technologie v současné době patří:**

- **Elektrolýza**

  Jedná se o proces, ve kterém stejnosměrný elektrický proud při průchodu vodou štěpí chemickou vazbu mezi vodíkem a kyslíkem podle rovnice:

  \[ 2\text{H}_2\text{O} \rightarrow 2\text{H}_2 + \text{O}_2. \]

  Vodík je jímán na kladné elektrodě a následně skladován. Elektrolýzu lze provádět i za pokojových teplot a výstupem je vysoce čistý vodíkový plyn bez nutnosti dodatečného dočišťování. I když účinnost tohoto procesu se pohybuje v rozmezí 60–70%, tak celková účinnost výroby vodíku elektrolýzou je jen 25–35% a podílí se na ní především nízká účinnost výroby elektrické energie. [10]

  Elektrolýza je tedy výhodná jen za předpokladu levné elektrické energie a dostatku vody. Názorným příkladem může být Island s jeho geotermální výrobou elektrické energie.

- **Vysokoteplotní elektrolýza**

  Charakteristické pro tento typ elektrolýzy je, že část energie se přivádí v podobě elektrické a část energie ve formě tepelné. Reakce probíhající při vysokoteplotní elektrolýze jsou reverzní k reakcím palivových článků s pevnými oxidy. Na vstupu do elektrolýzéru se přivádí vodík s vodní párou a výstupem je obohacená směs obsahující 75%hm vodíku a 25%hm páry.

  Vodík se odděluje v kondenzační jednotce a celková účinnost této přeměny dosahuje až 45% s možností využití odpadního tepla. [10]
• Parní reformování zemního plynu
Patří mezi nejlevnější a nejvíce rozšířený způsob výroby vodíku. Teplo pro reformní reakci i následnou konverzi oxidu uhelnatého je dodáváno z přímého spalování zemního plynu. Proces obsahuje dvě fáze. V první se za přítomnosti katalyzátoru do vodní páry o teplotě 500-1000°C a tlaku 0,3–2,5MPa přivádí metan obsažený v zemním plynu. Směs vodní páry a metanu reaguje za vzniku vodíku a oxidu uhelnatého spolu s menším podílem oxidu uhličitého. Za nižších teplot následuje navýšení produkce vodíku konverzí oxidu uhelnatého z reforméru přidanou párou.
Reformní reakce je: $\text{CH}_4 + \text{H}_2\text{O} \rightarrow \text{CO} + 3\text{H}_2$ , 
an konverze oxidu uhelnatého: $\text{CO} + \text{H}_2\text{O} \rightarrow \text{CO}_2 + \text{H}_2$ .

Účinnost produkce vodíku je okolo 80%, ale nevýhodou této transformace je vysoké množství oxidu uhličitého $\text{CO}_2$, které činí až 7 kg CO$_2$ na 1kg vodíku.

• Reformování metanolu
Jedna z mála využívaných metod je i postup štěpení metanolu vodní párou za přítomnosti katalyzátorů na bázi ZnO a Cr$_2$O$_3$ při teplotách 300–400°C a tlacích až 3MPa. Reformní reakce je: $\text{CH}_3\text{OH} + \text{H}_2\text{O} \rightarrow \text{CO}_2 + 3\text{H}_2$ .
Tuto reakci lze vhodně regulovat a to v rozmezí 20–100%, její účinnost dosahuje až k 90%.

Technologie, které jsou prozatím ve vývoji:

• Termochemické cykly štěpení vody
Při termochemickém štěpení vody je voda rozdělena na vodík a kyslík za pomocí série chemických reakcí. Cykly jsou uzavřené, tedy použité chemické látky jsou v průběhu reakcí recyklovány a znovu vstupují do procesu. Reakce využívají energii ve formě vysokopotenciálního tepla, případně hybridních cyklů tepla a elektřiny. Vstupující surovinou je pouze voda a dodané teplo a vystupujícím médiem je H$_2$ a O$_2$. K využití těchto cyklů jsou vyvíjeny jaderné reaktory IV. generace. [10]

• Termochemický S-I cyklus
Je představitelem levné výroby vodíku za pomocí jaderné energie. SIřičito-jó dový termochemický cyklus byl vyvinut v General Atomics v USA v polovině 70. let 20. století.
Konstrukčně vychází z obecných podmínek termochemických cyklů. Vnitřní chemických látek využívá jód a oxid siřičitý, které se při provozu recyklují a opětovně používají. Při produkci vodíku nastávají následující reakce:

v prvním kroku reaguje voda s oxidem siřičitým za vzniku kyseliny sírové a jodovodíkové:

\[
I_2 + SO_2 + 2H_2O \rightarrow 2HI + H_2SO_4 \quad (120 \, ^\circ C)
\]

Nejvíce tepla je upotřebeno k endotermickému rozkladu kyseliny sírové:

\[
H_2SO_4 \rightarrow SO_2 + H_2O + 1/2O_2 \quad (800-1 000 \, ^\circ C)
\]

Konečný krok činí rozklad kyseliny jodovodíkové:

\[
2HI \rightarrow I_2 + H_2 \quad (300-450 \, ^\circ C)
\]

Požadavek vysokých teplot a agresivita kyselin v těchto podmínkách si žádá vysokou odolnost konstrukčních materiálů. I samotná kontrola termochemických reakcí v průmyslovém měřítku může být problematická. Výhodná se ale jeví jeho účinnost dosahující 40-52%.[8]

**Biotechnologická produkcí vodíku**

Ve vývoji je také technologie výroby vodíku za pomocí mikroorganismů. Není možné ji ovšem zaměnit se zaběhlým zplynováním a rozkladem biomasy na bioplyn. Dochází zde totiž k přímé přeměně díky katalyzační reakci mikroorganizmy ve vodném prostředí za nízkých teplot a tlaků. Pokud produkce probíhá za přítomnosti světelného záření a jde o fotobiologickou nebo bez, kde se jedná o vodíkovou fermentaci. Produktovaný vodík touto metodou je poněkud nízkokapacitní, své potenciální využití by mohl zastávat k obtížně zpracovatelným odpadním surovinám (např. kaly čističek odpadních vod). [8]

**Vodíková fermentace**

Za anaerobních podmínek a nepřítomnosti světelného záření rozkládají speciální druhy bakterií organické látky obsažené ve vodném roztoku biomasy. Výsledkem jejich činnosti bez přístupu kyslíku dochází k redukcí protonů na vodík a takto uložení elektronů z oxidace organických látek. Vzniklý odpadní produkt efluent lze využít k dalšímu kroku fotobiologické produkce vodíku a to jeho složky acetátu případně k výrobě bioplynu. Zbytek nerozložitelné složky biomasy lze dále spalovat a tím se dosáhnout plného využití vstupního zdroje. [8]
Fotofermentace
Zastává proces přeměny odpadního produktu vodíkové fermentace konkrétně její složky acetátu. Bakterie jej za využití fotosyntézy přemění na vodík a CO₂. Celý proces probíhá bez přístupu kyslíku za přítomnosti kmene purpurové bakterie a je prakticky druhou částí vodíkové fermentace. [8]

Mimo jmenované zdroje existuje celá řada dalších metod výrobních procesů jak tento typ paliva vyrábět. Účelně bude směřovat produkci vodíku co nejvíce ekologickou cestou, bohužel to nebude dosažitelné pro všechny. Významnější roli bude hrát dostupnost surovin, energií, poptávky a provozních nákladů, nežli celková účinnost.

3.1.2 Distribuce vodíku

Vyrobený vodík se následně jímá do velkokapacitních zásobníků, kde prochází dalším procesem komprese a je stlačován na nižší objem. Jeho následné skladování probíhá v nízko a vysokotlakých velkokapacitních nádržích, případně se uvádí do zkapalněného stavu.

Jedním z předpokladů masového využití vodíku v dopravě je vyřešení problematiky jeho skladování, dopravy a budování sítě čerpadacích stanic. Pracoviště zabývající se velkovýrobovou vodíků v budoucnu nebudou dostatečně a rovnoměrně rozmístěny, a tak je na místě řešit i jeho možnosti dálkové přepravy.

Transport energie je všeobecně větší problém, než se zdá. Ke zcela nejlevnějším pátrání převoz kontejnerů s jaderným palivem, kde cena převozu představuje pouze zanedbatelnou položku v provozních nákladech. Druhým nejlevnějším je přeprava ropy a to ať ropovody či tankery, následuje doprava uhlí a až za ní je doprava zemního plynu. Samotná doprava vodíku je pak ještě dražší. Důvodem je pouze třetinová výhřevnost na jednotku objemu oproti zemnímu plynu. Jinými slovy, k přesunu stejného množství energie je třeba dopravit trojnásobně více vodíku v porovnání se zemním plynem.

K základnímu typu dálkové dopravy vodíku po mnoho let patří jeho uskladnění v tlakových nádobách a rozvozu za pomocí nákladní či vlakové dopravy. Z důvodů nízké hustoty vodíku a nadměrně hmotnosti tlakových nádob, která činí až 98% celkové hmotnosti soupravy, je distribuce vodíku touto cestou ekonomicky značně neefektivní. Řešení se proto užívá převážně pro maloodběratele. O poznání lépe vychází přeprava kapalného vodíku, kde se musí počítat se ztrátou energie pro jeho uvedení do kapalného stavu.
Jako ekonomicky efektivnější se jeví přeprava vodíku plynovodů. Stejně jako zemní plyn lze i vodík tímto způsobem dopravovat. Prozatím jsou známy sítě plynovodů v kumulaci mnoha výrobčů a spotřebitelů v jedné lokalitě. Pro příklad si můžeme uvězít Port Artur – Houston (Texas, USA) kde je délka trasy realizována potrubím o délce 225 km nebo v sousedním Německu kde společnost Chemische Werke Hüls provozuje vodíkový plynovod o délce přes 210 km. Problematiku působí hlavně vodíkové křehnutí (vodík může tzv. difundovat do základního materiálu a tam poškodit jeho strukturu) spolu s vodíkovou korozí materiálu. Udávané provozní ztráty jsou pozitivní a činí 1–3% z užitého objemu za rok. Jejich infrastruktura však skrývá nemalé výdaje k realizaci.

3.1.3 Čerpací stanice na vodík

Prvním krokem k budování čerpacích stanic s nabídkou vodíkového paliva je vyřešit vhodný typ skladování vodíku ve vozidlech. Pokud by se rozšířila převažující koncepce plynného vodíku hojně užívaného u testovaných motorových vozidel s palivovými články, pak se nabízí dvojí řešení v podobě:

- **Plnící stanice se zásobníky závislými na dodávkách vodíkového paliva**

  Tento typ čerpací stanice je dokonce dostupný i v ČR, nachází se v Neratovicích na ploše areálu společnosti Veolia Transport. Výstavbu realizovala a distribuci zajišťuje společnost Linde Gas, která má bohaté zkušenosti s výstavbou vodíkových palivových stanic po celém světě.


  Maximální plnící rychlost činí 4 kg/min a o množství odebraného vodíkového paliva se stará průtokoměr. Natankování paliva do automobilu je okolo 2 minut.

- **Plnící stanice s vlastní výrobu za pomocí například elektrolyzářu s podmínkou dodávky elektrické energie**

  Jedná se o ucelenou jednotku palivové stanice, ve které je palivo vyráběno přímo na místě. Odpadá tím i složitý proces distribuce paliva a projekt vychází z myšlenky vlastní dostupné čerpací stanice. Jedním z výrobců je britská společnost ITM Power, která tyto

3.2 Vodík jako palivo

Energetický nosič je možno chápat jako palivo a srovnat s dalšími současnými palivy. K hodnocení vodíku je nutno připomenout několik základních chemicko-fyzikálních parametrů. Prvek vodík má nejnižší hustotu \( (\rho = 0,089 \text{ kg/m}^3) \), při normálním tlaku a teplotě a druhý nejnižší bod varu ze všech známých látek, \( (t_v = -253 \degree \text{C}) \). Jedná se o nejjednodušší chemický prvek, jehož atom je tvořen pouze z jednoho protonu a elektronu. Jako prvek je velmi reaktivní a proto se jeho atomy navzájem spojují a vytvářejí molekuly o dvou atomech vodíku. Oproti atomovému vodíku je molekulový vodík poměrně stabilní a díky vysoké energii vazeb také málo reaktivní.

**Tabulka 1:** Parametry vodíkového paliva různého skupenství ve srovnání s propanem a benzínem. [15]

<table>
<thead>
<tr>
<th>Palivo (20°C) druh/skupenství</th>
<th>Vodík 1 bar</th>
<th>Vodík 350 bar</th>
<th>Vodík 700 bar</th>
<th>Vodík kapalný *</th>
<th>Propan kapalný</th>
<th>Benzín kapalný</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hustota [kg/m3]</td>
<td>0,084</td>
<td>22,2</td>
<td>39</td>
<td>71,08</td>
<td>498</td>
<td>700</td>
</tr>
<tr>
<td>Měrný ojem [l/kg]</td>
<td>11939</td>
<td>45,2</td>
<td>25,9</td>
<td>14,1</td>
<td>2</td>
<td>1,43</td>
</tr>
<tr>
<td>Měrný objem vztážený k benzínu</td>
<td>8354,7</td>
<td>31,6</td>
<td>18,14</td>
<td>9,85</td>
<td>1,4</td>
<td>1</td>
</tr>
<tr>
<td>Výhřevnost [MJ/kg]</td>
<td>119</td>
<td>119</td>
<td>119</td>
<td>119</td>
<td>46,3</td>
<td>44,5</td>
</tr>
<tr>
<td>Hustota energie [MJ/l]</td>
<td>0,01</td>
<td>2,64</td>
<td>4,6</td>
<td>8,46</td>
<td>23,08</td>
<td>31,15</td>
</tr>
<tr>
<td>Hustota energie vztážená k benzínu</td>
<td>0,0003</td>
<td>0,085</td>
<td>0,15</td>
<td>0,27</td>
<td>0,74</td>
<td>1</td>
</tr>
</tbody>
</table>

Z tabulky 1 celkem jasně vyplývá, že vodík má proti uhlovodíkovým palivům vyšší výhřevnost. Vztah je přepočítán na hmotnostní složku, a proto je důležitějším parametrem hustota energie. Ta vyjadřuje množství energie na daný objem paliva. Je přímo úměrná výhřevnosti a hustotě paliva. Kapalný vodík má přibližně desetinovou měrnou hustotu a přibližně čtvrtinovou hustotu energie ve srovnání s benzínem.
Uvažuje-li se o použití vodíku pro mobilní aplikace, jeví se technologicky jednodušší využití stlačeného vodíku. Podle použitého tlaku je hustota energie u stlačeného vodíku na 350 bar dvanáctinásobně a u 700 bar tj. v pascalech 3,5×10^7 Pa a 7×10^7 Pa) až sedminásobně nižší ve srovnání benzínem. Kapalný vodík vychází v tomto porovnání o něco lépe, stále se ale nevyrovná hodnotám uhlovodíkových paliv.

### 3.3 Skladování vodíku

Vodík může být skladován ve formách plynné a kapalné případně jako vázaný ve sloučeninách. Technologicky méně náročná se jeví aplikace v plynné formě a to už i při jeho přípravě ke skladování. Je třeba připomenout, že vodík se na daný tlak musí stlačovat, k čemuž se využívá kompresorových jednotek. Při přípravě kapalné fáze je nutno vodík podchlazovat pod teplotu jeho bohu varu což činí –253°C. Případně jej lze skladovat i jako chemicky vázaný plyn např. v hydridech kovů.

Při skladování vodíku u motorových vozidel se však dbá převážně na množství uložené energie. Vzhledem k nízké hustotě je nutno zajistit velký zásobní objem, který poskytne adekvátní dojezdovou dráhu vozidla.

![Obrázek 2: Porovnání potřebného objemu pro uložení 4kg vodíku.][14]

Porovná-li se tedy potřebný objem k uskladnění 4 kg vodíku, na který by vozidlo s palivovými články bylo schopno ujet více jak 480 km v mimoměstském provozu, pak na obrázku 2 je možné názorně vidět objemový charakter různých možností uskladnění vodíku pro srovnání s reálnou velikostí osobního vozu.

---

[14]: http://example.com
Obrázek udává zprava objem plynného vodíku při tlaku 200 bar, dále kapalný vodík následující dvě srovnání poukazuje na uložení vodíku v podobě hydridů kovů.

3.3.1 Plynný vodík

Stlačený vodík je uskladněn ve vysokotlakých nádobách vzhledově podobných tlakovým lahvím pro zemní plyn. Stejně jako ostatní tlakové láhve musejí podstupovat zkoušky na jmenovité tlaky a mají omezenou životnost. Zásobník má válcovitý tvar s půlkulovými vypuklými dny, v jejichž středu jsou matice s otvary pro průtok plynu. Na matice jsou osazené elektromagnetické ventily spolu s pojistnými a hadicemi pro rozvod plynu.

Zásobníky jsou vystaveny vysokým tlakům a musejí být konstruovány z tlustotěnných, vysoko pevnostních materiálů s ohledem na vodíkovou křehkost. U stacionárních zařízení převažuje výroba bezesvých ocelových lahví z nízkouhlíkových nebo legovaných ocelí. Pro mobilní aplikace se využívá převážně kompozitních tlakových nádob, které umožňují využití vyšších tlaků. Při běžných aplikacích jsou konstruovány objemy od 0,8 litrů do 140 l u ocelových a až 300 l u kompozitních materiálů. Typický tlak kompozitních lahví činí 350 až 700 bar.

Obrázek 3: Konstrukce kompozitní nádrže pro skladování vodíku. [6]

Z obrázku 3 je patrné, že vnitřní vrstva polymeru, případně hliníkových slitin, zastává funkci nepropustného obalu, na který je kombinací uhlikových vláken a pryskyřice navinuta kompozitní vrstva k jeho zpevnění.

Tlakové láhve musejí splňovat mnoho bezpečnostních prvků a to hlavně:

- zkušební testovací tlak 2-3 násobku jmenovitého tlaku při testu roztržení,
3.3.2 Kapalný vodík


Vodík v tomto typu zásobníku prozatím nemůže být skladován neomezeně. U všech známých konstrukcí zásobníků, bez ohledu na kvalitu izolace dochází k transferu tepla a tím i k odpařování kapalného vodíku a růstu tlaku uvnitř nádoby. Zásobníky mají konstrukční přetlak okolo 5 bar a v případě, že nedojde k jeho odboření, umožní přetlakový ventíl jeho odvedení. Takovéto snížení přetlaku není pouze ztrátou využitelného paliva, ale i potenciálním nebezpečím těchto parkujících vozidel v garážích podzemních budov.

Obrázek 4: Řez kapalnou nádrží vodíku (technologie Linde Gas). [14]

V současnosti vydrží nádrž 3 dny s motorem v klidu a u nové koncepce nádrží Linde-Gas s názvem CooLH2 udává výrobce až 12 dní. I tak jejich odvod za den může činit 1-3% hmotnosti a hrozí tím i možné úplné vyprázdnění nádrže v případě, že vozidlo není užíváno.
Ačkoli skladování kapalného vodíku eliminuje některé problémy vysokotlakých nádob, přináší sebou však nové rizika v podobě velmi nízkých teplot. I samotná příprava vodíku do kapalné formy s sebou nese spoustu ztrát při její distribuci.

3.3.3 Hydridy kovů

K možným systémům skladování vodíku u motorových vozidel patří i vázání vodíku v metal-hydridech. Systémy jsou založeny na principu snadné absorpce plynů určitými materiály na bázi kovů za exotermické reakce. Při této reakci za vysokých tlakových podmínek dochází k vývinu tepla, které se ze systému odvádí a dochází k vázání plynu do materiálu. Tyto nasycené materiály jsou následně schopny desorpcí produkovať plyn za relativně nízkých tlakových podmínek při dodávce tepelné energie. V podstatě jsou tyto sloučeniny kovů schopny nasáť a uvolnit vodík jako „houba“. Vodík se stává součástí chemické struktury těchto kovů a pro jejich skladování není zapotřebí vysokých tlaků či kryogenních teplot.

Primárně používané hydridy kovů jsou kovové slitiny hořičku, niklu, železa a títanu. Hydridy kovů mohou být v podstatě rozděleny podle teploty jejich desorpcí a to na vysokoteplotní a nízkoteplotní desorpci vodíku.

**Tabulka 2. Charakteristiky nejčastěji používaných hybridů.** [15]

<table>
<thead>
<tr>
<th>Charakteristika</th>
<th>Nízkoteplotní MeHydridy</th>
<th>Vysokoteplotní MeHydridy</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>FeTi-H₂</td>
<td>LaNi₅-H₆,₇</td>
</tr>
<tr>
<td>Množství slitiny, jež absorbuje vodík [%]</td>
<td>1,87 %</td>
<td>1,55 %</td>
</tr>
<tr>
<td>Hmotnost slitiny potř. k akumulaci 2,5kg vodíku [kg]</td>
<td>188 kg</td>
<td>225 kg</td>
</tr>
<tr>
<td>Desorpční teplota při tlaku 10 bar [°C]</td>
<td>52 °C</td>
<td>73 °C</td>
</tr>
<tr>
<td>Desorpční teplota při tlaku 1,5 bar [°C]</td>
<td>7 °C</td>
<td>21 °C</td>
</tr>
<tr>
<td>Doplňování</td>
<td>Bez podkladu</td>
<td>Velmi obtížné</td>
</tr>
<tr>
<td>Bezpečnost</td>
<td>Bez podkladu</td>
<td>Bezpečné</td>
</tr>
</tbody>
</table>

Z tabulky jsou patrné charakteristiky, které sebou přináší skladování vodíku za použití systému hydridů kovů. U vysokoteplotních je to převážně teplota při desorpci a potřeba
externího zdroje tepelné energie, což eliminují nízkoteplotní za cenu nízké absorpce vodíku do struktury. U obou systémů je nutno používat pouze velmi čistý vodík, jinak dochází ke kontaminaci hydridů a následné ztráty kapacity. Výhodou vysokoteplotních metal hydridů je fakt, že je lze volně skladovat při pokojových teplotách a jsou tekuté. Nevýhodou metal hydridů je celkem nízká hustota uskladněného vodíku, která dosahuje jen 8% jejich celkové hmotnosti. Systém s hydridy kovu může být až třicetkrát těžší a desetkrát objemnější než nádrž s benzínem stejného energetického obsahu. Dosavadní praktické zkušenosti s tímto způsobem skladování vodíku pocházejí převážně z kosmických programů. [6], [15], [16]

### 3.3.4 Alternativní možnosti skladování

Mimo již zmíněné metody se v současnosti zkoumají i další možnosti jak levněji a efektivněji vodík skladovat. Patří mezi ně skladování vodíku v hydridech alkalických zeemin, absorpce v uhlíkových porézních strukturách a uhlíkových nanovláknech, dále skleněné mikrofery a oxidace chemických sloučenin obsahujících vodík.

Většina z nich není doposud komerčně k dispozici a navíc jsou jednotlivé koncepce ve značně odlišných stádiích vývoje, proto není možné jejich přesné porovnání s dosavadními běžně užívanými systémy a uváděné hodnoty je nutno uvádět s rezervou:

- **Hydridy alkalických zemin**
  
  Jde o novou variaci hydridů, nabízejících vhodnější vlastnosti oproti předešlým metal hydridům. Složky hydridů reagují s vodou za vývinu vodíku bez nutnosti dodávky tepelné energie. Jedná se o proces skladování vodíku pro jeho jednorázové použití.

- **Uhlíková absorpce**
  
  Jsou založeny na slučitelnosti uhlíkových a vodíkových atomů. Vodík je vázan ve vysokoporézním grafitu či uhlíkatých nanotribicích. Hodnoty hmotnostních kapacit absorbovaného vodíku v nanostrukturách se dle jednotlivých studií pohybují v rozmezí 0,4 – 7% hmotnosti.

- **Uhlíková nanovlákna**
  
  S ohledem do budoucna tato technologie může patřit k nejvíce vyhledávaným možnostem skladování vodíku. Uhlíkové nanovlákna jsou podle studií schopny pojmout až 70%
váhy sloučeniny, což by pro motorová vozidla užívajících palivových článků mohlo znamenat dojezdovou dráhu bez nutnosti doplnění paliva až 5000 km.

- **Skleněné mikrokuličky**
  
  Jedná se o malé skleněné kuličky typických rozměrů 20-200 µm a tloušťkách stěny 0,5-20 µm naplněné plynným vodíkem o tlaku až 1000bar. Plnění probíhá za pomocí difuze molekul vodíku skrze stěnu při teplotách okolo 200°C a vysokých tlaků. Jakmile je vodík uskladněn kuličky je možno ponechat v podmínkách okolního prostředí bez ztrát vodíku.

  Ostatně na volbě vhodného skladovacího systému bude záviset i samotná infrastruktura, která se pro masové rozšíření vozidel s tímto pohonem musí realizovat. Je tedy na samotných výrobcích automobilů vybrat technologii, která bude splňovat podmínky bezpečného, spolehlivého a efektivního vozidla a právě zde se může skrývat velký potenciál zvýšení celkového cyklu účinnosti vozidla s palivovými články.

### 3.4. Bezpečnost vodíkového vozidla

Úvodem je třeba zmínit, že všechna paliva jsou nějakým způsobem nebezpečná. Všeobecně vysoká hustota energie, hořlavost a výbušnost jsou vlastností shodné všem dostupným druhům paliv. Skladování těchto látek v prostoru vozidla představuje určité riziko vznícení a vodík v tomto ohledu není výjimkou. Dokonce samotné palivové články je vhodné po ukončení provozu profukovat směsí dusíku a dbát na celkovou těsnost všech systémů.

Vodík je hořlavý ve velmi širokém rozmezí koncentrací (4 – 75%) a je výbušný v rozmezí koncentrací (15 – 59%) při normální teplotě okolí. Od stávajících fosilních paliv se odlišuje převážně ve velké rychlosti hoření, která činí 2,65 – 3,25 m/s a velmi malému elektrostatickému náboji (0,02 J) k jeho potřebnému zážehu. Navíc únik vodíku není cítit, je bezbarvý a pro lidské smysly nerozpoznatelný. Při hoření vodíku nejsou produkované saze ani toxické zplodiny, díky tomu není plamen za denního světla téměř viditelný.

Z výše uvedených parametrů může vyplývat, že provoz na tento typ paliva je v pohledu bezpečnosti oproti běžným palivům méně příznivý. Vozidla musí podstupovat mezinárodní testy bezpečnosti (Euro NCAP). Mnoho praktických zkoušek prokázalo menší
destrukční účinky vzplanutí vodíkové nádrže a také menšího rizika pro posádku oproti plné nádrži benzínu.


3.5 Ekonomika vodíkového pohonu

K nastínění ekonomiky provozu na vodíkový pohon se musí určit primární zdroj jeho výroby. Jako ideální se jeví využití obnovitelných zdrojů v podobě větrných a solárních elektráren, ty totiž nevyžadují elektřinu kdy je potřeba, nýbrž jen tehdy, když mají podmínky k provozu. Energetická sít’ potřebuje, aby přísun energie nepřevažoval odběr, jinak hrozí kolaps sítě. Při velkém rozšíření například větrných elektráren by tento problém mohl nastat. Řešením by proto bylo, při nadměrné výrobě elektřiny spustit elektrolýzu a energii ukládat ve formě vodíku.

Takto produkované palivo pouze z obnovitelných zdrojů má velký potenciál k jeho využití u pohonu motorových vozidel. Studii na tomto poli realizoval významný světový expert na palivové články Dr. Ulf Bossel, který se ve své práci [17] věnoval problematice vodíkové ekonomiky. Studie poukazuje na vysoké energetické ztráty ve vodíkovém hospodářství (viz obr. 5).
Obrázek 5: Graf porovnání využitelné energie vozidel na konci cyklu. Pohon palivo-vým článkem (vlevo) oproti elektromobilu využívající pohonu čistě baterií (vpravo). (dle Dr. Ulf Bossel studie z roku 2006, [17])

Účinnost systému s palivovými články za použití plynného vodíku, popis jeho řetězce:
- Střídavá elektrická energie se pro elektrolýzu převede na stejnosměrnou, za pomocí usměrnovače. Ztráty činí 5% a z dodaných 100 kWh je na výstupu 95 kWh.
- Stejnosměrná elektrická energie se přemění na vodík za pomocí elektrolýzy se ztrá-tou 25%, na výstupu je 75 kWh.
- Vyrobený vodík se jímá a stlačuje na menší objem za pomocí kompresorových jednotek se ztrátou 10%, užitelný výkon klesá na 64 kW h.
- Vodík se následně musí skrze kompresorové jednotky dopravit přes čerpač stanici, až do nádrží vozidla. Ztráta přečerpáváním může činit až 20% a užitelný výkon znovu poklesne, tentokrát již na 51 kWh.
- Následně je vodík chemicky spalován v palivovém článku vozidla a získána elek-trická energie s určitými ztrátami celého systému vozidla. Uvažuje se s účinností okolo 50%, kdy na výstupu již je pouze 26 kWh elektrické energie.
- Tato elektrická energie se se ztrátami okolo 10% přemění v mechanickou za pomo-cí měniče, elektromotoru a převodového ústrojí. Tím se dostává využitelná energie na pouhých 23 kWh.
Využije-li se tedy elektrická energie jako možný potenciál budoucích motorových vozidel, ztráty na konci řetězce při použití vodíkového pohonu poskytnou asi jen čtvrtinu vložené energie. Pokud by byly tyto energetické ztráty účtovány zákazníkovi, elektřina z vodíkových palivových článků bude alespoň čtyřikrát dražší než z elektrické sítě.

Zajímavější vychází systém elektromobilu, který je schopen poskytnout více než polovinu vložené energie. Ačkoli elektromobily prozatím nejsou schopny dodat akční rádius srovnatelný s vozidly využívajících palivového článku a mají své další černé stránky, v tomto souboji se jeví jako ekonomicky výhodnější.

Zavedení takovéhoto konceptu již nyní, by v budoucnu mohlo znamenat plýtvání druhcem elektrické energie, na snaze je tedy co nej více zefektivnit účinnost. Případně využít alternativní, i když ne úplně čisté metody jeho výroby.

4 PALIVOVÝ ČLÁNEK

4.1 Princip funkce palivového článku

Palivové články představují zařízení, v nichž na základě elektrochemických procesů dochází k přímé přeměně energie paliva na stejnosměrnou elektrickou energii. Umožňují tedy přeměnu energie paliva, aniž by bylo potřeba tepelného či mechanického přechodného mezistupně (viz obr. 6). Na rozdíl od baterií nejsou aktivní chemické látky součástí anody a katody, takže nedochází k vybíjení článku, nýbrž kontinuální produkci elektrické energie za předpokladu dodávky paliva a okysličovadla. Vytrácí se tedy pojem jako kapacita samotná a jsou zde užity parametry napětí, které teoreticky činí až 1,23 V a výkonu odebíraného z 1 dm$^3$ elektrod. Často se také uvádí hodnoty měrného výkonu W/kg, objemového výkonu W/dm$^3$ a nebo výkonu plochy elektrod W/cm$^2$. [2]

Obrázek 6: Transformace energie. [5]
4.2 Princip činností a chemických reakcí

Princip transformace chemické energie v elektrickou energii je pro všechny palivové články v podstatě stejný. Jednotlivé palivové články se však liší palivem, oksyličovadlem, materiálem elektrod, elektrolytem, pracovní teplotou a tím i probíhající chemickou reakcí na anodě a katodě.

Pro názornost je možno rozebrat funkci nejvíce prozkoumaného palivového článku, jehož palivem je vodík (viz obr. 7). Princip činnosti tohoto článku představuje opačný děj k elektrolýze. Jakožto u elektrolýzy jsou dvě elektrody (anoda) s kladným nábojem, ke které se přivádí palivo, které zde oxiduje a jehož atomy se často za přispění katalyzátoru zbavují jednoho či několika elektronů z valenční sféry. Uvolněné elektrony představují elektrický proud putující uzavřeným vnějším obvodem k záporné elektrodě (katodě). Zde dochází za pomocí oksyličovadla k redukci a atomy kyslíku volné elektrony přijímají, za současně reakce s kladnými ionty, které k ní pronikají elektricky nevodivým elektrolytem. Dojde-li k přerušení vnějšího uzavřeného obvodu odpojením zátěže, elektrony přestávají proudit obvodem a chemická reakce se zastaví. Popisovaná reakce v palivovém článku se nazývá oxidačně redukčním nebo zkráceně redoxním dějem.[3]

Probíhající chemické reakce jsou:

reakce na anodě: \[ 2 \text{H}_2 \rightarrow 4\text{H}^+ + 4e^- , \]
reakce na katodě: \[ \text{O}_2 + 2\text{H}_2\text{O} + 4e^- \rightarrow 4\text{OH}^- . \]

Následně vzniklé ionty se společně s vodíkovými kationty slučují v molekuly vody:
\[ \text{H}^+ + \text{OH}^- \rightarrow \text{H}_2\text{O} . \]

Výsledkem produkce je následně odváděná voda případně vodní pára + teplo. Celkový redoxní děj v palivovém článku je tedy:
\[ 2\text{H}_2 + \text{O}_2 \rightarrow 2\text{H}_2\text{O} . \]
Obrázek 7: Schéma činnosti palivového článku. [10]

4.3 Palivo

Palivem kromě zmíněného čistého vodíku H₂ mohou být i kapalné či tuhé látky. Všechny typy níže jmenovaných palivových článků jsou k využití vodíku přizpůsobeny. Mimo to lze spalovat i oxid uhličitý CO₂ či uhelnatý CO a methan CH₄. U kapalin se jedná o metanol CH₃OH a další složité alkoholy, případně hydrazin H₂H₄. Z tuhých látek jsou to některé kovy – a to sodíku Na, hořčíku Mg, zínu Zn a kadmia Cd. [2]

4.3.1 Konstrukce elektrod


Je-li palivem kapalina, pracuje elektroda pouze s pevnou a kapalnou fází. Jemná pórovitá struktura zde ztrácí smysl. Rozhodujícím faktorem se v tomto případě stává velikost
aktivního povrchu elektrody, poněvadž palivo se k ní přivádí v rozpuštěném elektrolytu. Záporná elektroda je od kladné oddělena separátorem, který propouští pouze vybrané ionty. [3]

Vzhledem k tomu, že okysličovadlem bývá zpravidla plyn, platí pro kladnou elektrodu stejné zásady jako u záporné plynné s možným stykem všech tří fází. K tomuto účelu je využito kyslíku O\textsubscript{2} případně vzduchu zbaveného jemných prachových částic. [3]

4.3.2 Katalyzátory

Provoz palivových článků (PEMFC, DMFC a PAFC) s kyselým elektrolytem za nízkých teplot vyžaduje, aby povrch elektrody byl opatřen vhodným katalyzátem příslušných reakcí. Jedná se o látky, které umožňují urychlení chemických reakcí a chránění elektrody proti účinkům koroze agresivního prostředí. Reakce se zúčastní a nedochází k jejich spotřebě. To znamená, že po ukončení reakce zůstávají chemicky nezměněny. Známé jsou především drahé kovy, kam patří platina či palladium. V současné době konstrukční celky palivových článků obsahují hodnoty až sto gramů platiny, což představuje nemalé finanční náklady a to pouze za surový kov k ochraně elektrody. Hledají se proto možnosti jak tyto drahé katalyzátory u těchto nízkoteplotních článků nahradit, případně minimalizovat jejich množství za současného zachování výkonu palivového článku. Určitou výhodu cíní fakt, že platinu lze z palivových článků až z 90 % recyklovat.

4.4 Soubor palivových článků

Palivový článek se konstruuje z několika desítek až stovek elementárních článků (cell) dělených bipolárními deskami, které tvoří jeho modul (Stack). Napětí jednoho článku (cell) činí dle typu 0,5-1,1V.

Z důvodů omezení ohmických ztrát a konstrukčních hledisek se převážně volí metoda sériová, čili za sebou poskládaných a zapojených článků, které mají svorkové napětí desítky až stovky voltů. Jeho výkon tím roste a to tak, že plochu zvyšujeme násobením vrstev za sebou. V principu neexistuje žádné omezení na počet elementárních článků v celkovém souboru a energetické jednotky proto lze konstruovat v širokém rozmezí výkonů od wattů po megawatty, přičemž malé jednotky pracují s takřka stejnou účinností jako velké.
Konstrukční celek umožňuje přívod a odvod paliva, vstup oxidačního činidla spolu s odvodem zbytkového plynu a reaktantů v podobě H₂O a případného uvolněného tepla. Elektrické napětí z něj odebíráme na svorkách koncových desek článku.

Při spojování polymerických PEMFC článků nejčastěji používaných u konstrukcí pro mobilní použití – motorových vozidel nevyjímáme, do souboru jde využito bipolárních, membránových a koncových difuzních destiček. Struktura membránových desek MEA (Membrane Electrode Assembly), aneb sestava membránových elektrod, je tvořena elektricky nevodivým elektrolytem v podobě tuhého polymeru nejčastěji typu Nafion a dvou elektrod v podobě anody a katody. Bipolární destičky jsou tvořeny soustavou kanálků různých tvarů, kterými je přes difuzní vrstvu dopravováno palivo s oxidačním činidlem k MEA a zároveň odváděn odpadní produkt. Desky jsou nejčastěji vyráběny lisováním uhlíku za použití různých vodivých polymerů jako pojiva. Do vylisovaných desek se frézováním vytváří rozvodná pole s otvory pro případné chlazení a kompletaci článků. Celková tloušťka jednoho článku pak dosahuje rozměru řádu milimetrů. [15]

K základním konstrukčním faktorům bipolárních desek patří:

- Co nejvyšší styk paliva a elektrody.
- Proudění plynu bez odporu.
- Minimální tloušťka vrstvy.
Bipolární deskou může proudit i chladicí kapalina, vyžaduje se od ní utěsnění jednotlivých vrstev a dostatečná elektrická vodivost.

4.5 Rozdělení palivových článků

V současné době existuje několik základních typů palivových článků, které se liší především druhem elektrolytu, provozní teplotou i účinností elektrochemických přeměn. Tím je dáno i odlišné konstrukční provedení, způsob provozu a přípravy paliva. [2]

Podle typu elektrolytu se články dělí na:

- Alkalické články (AFC’s – Alkaline Fuel Cells) elektrolytem je zředěný roztok hydroxidu draselného KOH.
- Články polymerní ionto-měničovou membránou (PEMFC’s – Proton Exchange Membrane Fuel Cells) báze kyselých fluorovaných polymerů.
- Články s kyselinou fosforečnou (PAFC’s – Phosphoric Acid Fuel Cells) jejichž elektrolytem kyselina fosforečná HPO₃.
- Články s roztavenými uhličitany (MCFC’s – Molten Carbonate Fuel Cells) elektrolytem je směs roztavených uhličitanů.
- Články s tuhými oxidy (SOFC’s – Solid Oxide Fuel Cells) tzv. keramické, elektrolytem jsou tuhé oxidy vybraných kovů (yttria a zirkonu). [1]

Podrobnější data uvádí tabulka 3 níže:

Tabulka 3: Stručný přehled rozdělení palivových článků. [15], [22]

<table>
<thead>
<tr>
<th>Typ článků</th>
<th>Pracovní teplota [°C]</th>
<th>Elektrolyt</th>
<th>Palivo</th>
<th>Účinnost [%]</th>
<th>Možné aplikace</th>
<th>Typický výkon [kW]</th>
</tr>
</thead>
<tbody>
<tr>
<td>AFC</td>
<td>90 - 100 °C</td>
<td>Hydroxid draselný (KOH)</td>
<td>Čistý vodík</td>
<td>60%</td>
<td>Vesmírné, vojenské</td>
<td>10 - 100 kW</td>
</tr>
<tr>
<td>PEMFC</td>
<td>50 - 120 °C typicky 80°C</td>
<td>Polymerní kyselá membrána</td>
<td>Vodík i reformáty paliv</td>
<td>40 – 60%</td>
<td>Univerzální, automobilová doprava</td>
<td>&lt;1 - 250 kW</td>
</tr>
<tr>
<td>DMFC</td>
<td>50 - 120 °C</td>
<td>Polymerní kyselá membrána</td>
<td>Methanol</td>
<td>40 – 60%</td>
<td>Mobilní aplikace</td>
<td>&lt;1 - 50 kW</td>
</tr>
</tbody>
</table>
b) Vysokoteplotní

<table>
<thead>
<tr>
<th>Palivový článek</th>
<th>Teplotní rozmezí</th>
<th>Elektrolyt</th>
<th>Vodík, Zemní plyn</th>
<th>Elektrárny</th>
<th>Počet</th>
</tr>
</thead>
<tbody>
<tr>
<td>PAFC</td>
<td>150 - 200 °C</td>
<td>Kyselina fosforečná (HPO₃)</td>
<td>40%</td>
<td>Malé elektrárny</td>
<td>50 kW – 11 MW</td>
</tr>
<tr>
<td>MCFC</td>
<td>600 - 700 °C</td>
<td>Tavené uhličitan lithia a draslík</td>
<td>45 - 50%</td>
<td>Elektrárny</td>
<td>0,3 - 3 MW</td>
</tr>
<tr>
<td>SOFC</td>
<td>700 - 1000 °C</td>
<td>Tuhé keramické oxidy</td>
<td>60%</td>
<td>Elektrárny</td>
<td>1kW - 2MW</td>
</tr>
</tbody>
</table>

4.5.1 AFC Alkalický palivový článek

Z historického hlediska se jedná o nejvíce prozkoumaný a vyvíjený typ palivového článku, který už počátkem 60. let nalezl široké uplatnění v americkém vesmírném programu Apollo. Sloužil pro výrobu elektrické energie a vody na vesmírných plavidlech. Elektrolytem byl 85% roztok kyseliny KOH, kdy pracovní teploty dosahovaly rozmezí 100-250°C. Nutnost provozu článků za takovýchto teplot představuje uzpůsobení konstrukce vysokým tlakům, aby nedocházelo k odpařování elektrolytu.

Jeho nízkoteplotní varianta má elektrody vyrobeny ze spáleného niklového prášku (kvůli porovatostí) a pokryty katalyzační vrstvou za účelem zvýšení účinnosti při nižších teplotách tvořenou povlakem platiny. Elektrolytem je ředěný 35-50% roztok hydroxidu draselného KOH, který je obvykle fixován v matrici za pomocí azbestu. Hydroxid draselný KOH při styku se vzdušným oxidem uhličitým CO₂ vytváří uhličitan draselný K₂CO₃. Dochází tím k degradaci roztoku a zanášení pórů což by způsobilo nevratné poškození článku, proto se jako oxidační činidlo přivádí kyslík O₂ o vysoké čistotě. Důležitým prvkem při chemické reakci v blízkosti katody jsou anionty OH⁻ získané disociací KOH. [2]

\[
\text{KOH} \rightarrow \text{K}^+ + \text{OH}^-
\]

Anionty prostupují elektrolytem a reagují na anodě s příváděným vodíkem, a to podle rovnice:

\[
2\text{H}_2 + 4\text{OH}^- \rightarrow 4\text{H}_2\text{O} + 4\text{e}^-.
\]

Uvolněné elektrony putují vnějším obvodem ke katodě, kde pak reagují s příváděným kyslíkem a vodou dle rovnice:

\[
\text{O}_2 + 2\text{H}_2\text{O} + 4\text{e}^- \rightarrow 4\text{OH}^-.
\]
Produktem reakcí je voda, elektrický proud a teplo. Z rovnic lze zjistit, že voda se na anodě produkuje dvakrát rychleji, než se na katodě spotřebovává. Souhrnná reakce je tedy:

\[ 2H_2 + O_2 \rightarrow 2H_2O. \]

Ačkoli současné prototypy vykazují životnost článků okolo 8000 hod. pro jejich ekonomickou životaschopnost je nutné dosáhnout minimálně 40000 hod.

**Obrázek 9:** *Elementární palivový článek s alkalickým elektrolytem. [16]*

- K výhodám tohoto typu článků patří minimální koroze konstrukčních materiálů a nízká spotřeba platinového katalyzátoru při jeho konstrukci. Dále poměrně jednoduchá konstrukce, jeho vysoká účinnost a rychlý náběh do pracovního režimu.

- Mezi nevýhody patří vysoká citlivost na oxid uhličitý CO₂ při provozu se vzdušným kyslíkem by tedy vyžadoval nákladné čištění obou aktivních materiálů elektrod a regeneraci elektrolytu. Ani reformovaná paliva by tomuto článku nevyhovovala, jelikož obsahují značnou složku zbylého CO₂. Články navíc obsahují tekutý elektrolyt a s ním související problémy při manipulaci.
4.5.2 PEMFC Články s tuhými polymery

Vysoká proudová hustota spolu s nízkou hmotností a malými rozměry jsou předností polymerních článků s elektrolytickou membránou. Jak již název napovídá, elektrolytem je pevná polymerní membrána, která zjednodušuje těsnění při chemickém procesu, snižuje korozivzdornost a zvyšuje životnost článku. Polymerní články pracují za nízkých teplot, což dovoluje poměrně rychlé najetí na plný výkon. Tyto důvody jsou velmi příznivé pro jejich využití k pohonu vozidel, případně záložních zdrojů. [5]


SO₃H⁺ je silně kyselá a má schopnost uvolňovat ionty H⁺, které jsou v polymeru volně pohyblivé.

V reakci na anodě oxiduje vodík dle rovnice, za vzniku H⁺, který snadno prochází přes membránu ke katodě. Přívedený kyslík na katodu způsobí reakci dle rovnice:

\[ 2H_2 \rightarrow 4H^+ + 4e^- \]
\[ O_2 + 4H^+ + 4e^- \rightarrow 2H_2O \cdot \]

Přítomnost elektrolytu v podobě polymerní membrány má řadu výhod – provoz těchto článků nezávisí na jejich poloze, odpadá problém s vnitřní korozí, jelikož jedinou látkou v kapalné fázi je voda a je i imunní vůči přítomnosti CO₂.

Nízká provozní teplota a kyselá polymerní membrána sebou nese citlivost na přítomnost iontů obecných kovů, která snižuje její propustnost. Kompenzuje se za pomocí slabého povlaku z platiny, která je vkládána do korozivzdorných pouzder z pozlaceného titanu. V případě, že je ke stavbě elektrody využito porézního uhlíku, platina se váže přímo na jeho strukturu.

Ovšem za teplot pod 150°C se oxid uhelnatý CO silně váže na platinu, což znamená citlivost na kvalitu čistoty vstupujícího paliva vodíku. Pokud se použije reformovaného paliva, které může obsahovat až 1% tohoto prvku, došlo by k prudkému snížení životnosti článků. Proto se před vstupem musí řádně zařízení k jeho odloučení.

Pro správnou funkci PEMFC článků s membránou nesoucí obchodní název nafion je důležité využití odpadního produktu. Voda je zde produkována jako kapalina z celkové
reakce a požadavkem tohoto typu elektrolytu je vlhčení membrány za účelem zvýšení iontové vodivosti a tím i vyšší účinnosti článku. Z poznatku vyplývá, že horní limit pracovní teploty činí 100°C. Jejich účinnost systému činí kolem 60% a garantovaná životnost udávaná výrobcem je více než 5000 hodin provozu.

Obrázek 10: *Elementární palivový článek s polymerní membránou.* [23]

Společnost Dow Chemical Co. a M3 vyvinuly další zlepšení pro membrány na základě perfluorovaných polymerů. Tento nový polymer má při stejných iontoměničových vlastnostech lepší mechanickou pevnost a asi jen poloviční náchylnost k hydrataci jako nafion. Články s novými polymery mohou pracovat při teplotě nad 100 °C, což významně urychluje elektrody a snižuje podíl katalyzátoru.

- Ke kladům tedy patří především možnost využití vzdušného kyslíku k jejich provozu, jelikož jsou odolné vůči obsahu CO₂ a tedy i reformovaných paliv. Dále relativně rychlý náběh do provozního režimu a příznivý poměr hmotnosti a výkonu. Použití pevného elektrolytu eliminuje nároky na manipulaci s tekutinami.
- K záporům článků s tuhými polymery patří vysoká cena kyselých fluorovaných membrán, jejich proces výroby je patentován a tím i nutnost použití katalyzátorů v podobě platiny což zvyšuje jejich cenu. Při konstrukci celku se musí počítat s hydratací membrány a kvalitou použitého paliva, jež nesmí obsahovat zbytkové prvky oxidu uhelnatého CO.
4.5.3 DMFC Články s methanolovým palivem

Snaha o využití kapalných paliv bohatých na vodík bez využití reformace paliva dala za vznik konstrukci palivového článku, jehož palivem je metylalkohol. Hlavní výhodou metylalkoholu spočívá v bezproblémovém skladování, přepravě a tankování. Navíc v objemové jednotce methanolu je větší množství energie, než je tomu u vodíku.

Článek pracuje při teplotách okolo 100°C a jedná se o vylepšenou verzi PEMFC se změnou anodové elektrody a uzpůsobením její konstrukce kapalnému palivu. Podobně jako při reakci vodíku dochází k oxidaci paliva na anodě:

\[ CH_3OH + H_2O \rightarrow CO_2 + 6H^+ + 6e^- \]

a redukci kyslíku na katodě:

\[ \frac{1}{2}O_2 + 6H^+ + 6e^- \rightarrow 3H_2O \, . \]

Sumární reakce je potom:

\[ CH_3OH + \frac{3}{2}O_2 \rightarrow CO_2 + 2H_2O \, . \]

Oxidace methanolu je oproti vodíku pomalejší, což způsobuje, že dochází k několika reakčním mezistupňům. V jednotlivých stupních vznikají uhlíkové skupiny jako COH, COOH, CO, které mnohem snadněji absorbují platinový katalyzátor. Zabrání se tomu nánosem vrstvy ruthenia na anodovou elektrodu a to nejlépe v poměru 1:1 spolu s platínou. Ruthenium napomáhá oxidaci uhlíkatých skupin a mění je na CO_2, který uniká jako plyn z vrstvy katalyzátoru.

Pomalejší reakce methanolu mají za následek i nižší účinnost oproti článkům PEMFC. Jejich výkon na jednotku plochy je tedy nižší což zvyšuje jejich hmotnost a cenu. Konstruuje se tedy celky s malými výkony určené převážně pro mobilní aplikace, notebooky a další přenosná zařízení. Methanol je navíc silně jedovatý. [12]

4.5.4 PAFC Články s kyselinou fosforečnou

Představuje typ prvních komerčně rozšířených palivových článků převážně pro stacionární aplikace. Jako elektrolyt je zde použita tekutina v podobě kyseliny fosforečné H₃PO₄, která je obsažena v matrice z karbidu křemíku a přísadami teflonu. Nízká iontová vodivost kyseliny fosforečné za malých teplot zvyšuje provozní teplotu na rozsah 190 – 210 °C. Matrice má jemnou porézní strukturu a do značné míry zabraňuje úniku elektrolytu během
činnosti článku. I přesto se musí po určité době kontrolovat případně doplňovat, jelikož menší množství může být strženo prouděním paliva či okyslícovadla.

Elektrody jsou tenké destičky z pórovitého uhlíku s platinovým povlakem, který slouží jako katalyzátor. Okyslícovadlo s palivem je přiváděno k zadním stěnám elektrod paralelními drážkami v deskách z uhlíku či uhlíkatých sloučenin. Desky mají dobrou elektrickou vodivost a odvádějí elektrony od anody ke katodě sousedního článku. Bipolární desky mají drážky po obou stěnách. Využívá se jich při stavbě kompaktního celku mezi bloky palivového článku. Podél jedné strany se přivádí palivo k jednomu článku a podél druhé okyslícovadlo k článku sousednímu. [2]

Anodová i katodová reakce jsou totožné jako u PEMFC článků, rozdílem je vyšší teplo a totožná jako u PEMFC článků, rozdílem je vyšší teplo kdy je odpadní produkt v podobě vodní pary.

![Obrázek 11: Elementární palivový článek s kyselinou fosforečnou.][22]

**4.5.5 MCFC Uhličitanové palivové články**

Za konstrukcí těchto článků se skrývá svaha využití přímočného spalování zemního plynu a zplyňovaného uhlí jako paliva. Jedná se o vysokoteplotní palivové články s pracovní teplotou okolo 650°C s možností vnitřní reformace paliva a potenciálem použití u stacionární techniky. Využití elektrolytu tvořeného inertní keramickou matricí ze směsí oxidů lithia a hliníku LiAlO₂ má za těchto teplot své výhody, není potřeba katalyzátoru pro elektrochemickou reakci.
V pórové matrici je struktura elektrolytu vyplněna taveninou uhličitanu lithného Li₂CO₃ a uhličitanu draselného K₂CO₃ v poměru 6/4. Za provozu má směs uvedených solí vysokou iontovou vodivost, ale může docházet k malému odpařování, které na provozu nemá až takový vliv. [1]

Použité palivo jsou plyny vznikající zpracováním uhlí nebo zemního plynu, který se v důsledku vysokých teplot v článku rozkládá za vzniku plynného vodíku.[3]

Návrh elektrod musí brát v potaz vysoké teplotní podmínky a agresivní prostředí spolu s plynným palivem. Vysoko porézní anoda je tedy tvořena spěkáním niklového prášku s přísadou chrómu. Katoda je vyrobena dopováním oxidu nikelnatého NiO lithiem Li. Významným faktorem životnosti článku je rychlost probíhající koroz katody.

Chemické reakce na anodě:

\[
\begin{align*}
H_2 + Co_3^{2-} & \rightarrow H_2O + CO_2 + 2e^- , \\
CO + Co_3^{2-} & \rightarrow 2CO_2 + 2e^- ,
\end{align*}
\]

kde CO₃²⁻ představují dvojmocné uhličitanové anionty získané disociací molekul elektrolytu. Probíhající reakce na katodě:

\[
O_2 + 2CO_2 + 4e^- \rightarrow 2CO_3^{2-} ,
\]

při níž se uhličitanové anionty znovu vytvářejí a postupují elektrolytem k anodě.

Obrázek 12: Elementární palivový článek s tavenými uhličitany. [22]
Oxid uhličitý CO₂ potřebný pro zdánlivý průběh katodové reakce se odevírá z anody, kde vzniká spolu s vodní párou jako vedlejší produkt.

Elektrické napětí a účinnost článku závisí na jeho teplotě. Vyšší teploty urychlují popsané chemické reakce k její regulaci je využito změny průtoku vzduchu. Nevýhodou je komplikované nastartování článků z důvodů vysokých provozních teplot a možnost otravy sírou vznikající v případě spalování fosilních paliv.

4.5.6 SOFC – Keramický palivový článek

Patří mezi články s nejvyšší provozní teplotou a to až 1000°C, tudíž zde není kapalný elektrolyt, nevyvolává korozí elektrod a neklade žádné omezení na tvar článku. Takto vysoke teplota zajišťuje příměšenou iontovou vodivost elektrolytu a lze využít jeho produktů spalování (přehřáté vodní páry) k rekuperaci či výrobě elektrické energie za pomocí turbíny a generátoru. Stejně jako předešlý umožňuje za pomocí vnitřní reformace využití fosilních paliv.

Součástí elektrolytu bývá tuhá směs oxidů yttria a zirkonu. Tyto látky patří při dostatečně vysokých teplotách mezi výborné vodiče dvojmocných aniontů kyslíku. Anoda sestává z niklu a oxidu zirkoniečitého ZrO₂ stabilizovaného oxidem yttritým Y₂O₃ (někdy s přísadou chromu); jedná se o látky, které zabraňují spěkání částic niklu. Poréznost anodové struktury se pohybuje mezi 20-40%. Katoda má rovněž porézní strukturu a připravuje se ze slitiny lanthanu a oxidu manganového, který je dopován menším množství stroncia. [2]

Palivem jsou obvykle plynné látky získané zpracováním uhlí. Tyto látky mohou obsahovat čistý vodík H₂, oxid uhelnatý CO, případně metan CH₄. Dochází mezi nimi a dvojmocnými anionty kyslíku k reakcím na anodě: [1]

\[
\begin{align*}
H_2 + O^{2-} &\rightarrow H_2O + 2e^- \\
CO + O^{2-} &\rightarrow CO_2 + 2e^- \\
CH_4 + 4O^{2-} &\rightarrow 2H_2O + CO_2 + 8e^- 
\end{align*}
\]

Vzniklé anionty kyslíku na katodě:

\[
O_2 + 4e^- \rightarrow 2O^{2-}
\]

Pro úspěšný provoz keramických palivových článků je nutné využít konstrukčních materiálů se srovnatelným koeficientem teplotních roztažností a to z důvodu možného vzniku pnutí. Zároveň musí být tepelně stíněn z důvodu ochrany obsluhy a udržení potřeb-
né teploty. Na teplotě také závisí účinnost článku, případný pokles o 10% sníží účinnost až o 12%. Oproti článkům s roztavenými uhličitany u nich nehrozí otrava sírou.

Obrázek 13: Elementární palivový článek typu SOFC. [22]

Ačkoli nevyžaduje katalyzátory, není příliš vhodný pro využití v automobilové dopravě a mobilních aplikacích. Problémovým faktorem je jeho provozní teplota a nastartování článku by bylo u mobilních aplikací velmi energeticky náročné. Jako perspektivní se jeví pro kombinovanou výrobu elektřiny a tepla ve středním a větším měřítku, kde jeho celková účinnost výroby elektrické energie při využití odpadního tepla dosahuje výborných hodnot.

Napětí článku je přibližně 0.6 V při proudové hustotě cca 0.25 A/cm². Životnost přesahuje až 30 000 hodin. Elektrická účinnost článku závisí na tlaku paliva a vzduchu. Při normálním tlaku je asi 45%, při vyšších tlacích teoreticky až 60%. Využije-li se odpadní teplo, vzroste účinnost o dalších několik desítek procent. [2]

Palivové články s pevným elektrolytem byly od počátku vyvíjeny ve dvou odlišných koncepcích. Jednalo se o standardní deskové konstrukce monolitních bipolárních a zvláštního tubusového uspořádání v podání společnosti Westinghouse, viz znázornění na obr. 14.

Ta se skládá z nosné porézní keramické trubice, katody, tuhého elektrolytu a anody. Oxidační plyn putuje vnitřním trubice a palivo se přivádí v souproudu po vnějším povrchu anody. Celková délka trubice čítá až 100 cm. [5]
4.6 Účinnost palivových článků

![Diagram showing efficiency of various energy production systems](image)


4.6.1 Stupeň využití paliva $U_f$

Představuje poměr paliva, které se skutečně podílelo na reakci v palivovém článku-ku celkovému množství do něj vstupujícímu. Jedná se pouze o experimentální hodnoty. U vodíkových článků se hodnota blíží 100%. Pokud je palivem zemní plyn, velikost $U_f$ se
pohybuje v rozmezí 70 – 90% obecně to znamená čím vyšší výkon celkové jednotky tím i vyšší využití paliva.[5]

4.6.2 Maximální teoretická účinnost $\eta_{\text{max}}$

Stroje pracující na základě tepelných cyklů mají jistou maximální teoretickou účinnost danou dle Carnotova cyklu. Palivové články jsou považovány za zajímavou alternativu, která není limitována Carnotovým cyklem. Spalovací motory mění chemickou energii paliva na teplo a to koná užitečnou práci. Pokud by se u spalovacího motoru zvýšila teplota plynu vstupujícího do motoru (tzn. teplota plynů vzniklých spalováním paliva) a snížila teplotu plynu po expanzi (tj. teplota výfukových plynů), zvýšila by se tím i termodynamická účinnost. Ve skutečných spalovacích motorech je ale horní teplota spalování limitována použitými materiály a navíc motory s vnitřním spalováním mají výstupní teplotu rovnou pracovní, která je limitována teplotou vzplanutí směsi. Proto již nelze zvýšit teplotu vstupujícího plynu a dolní hranice teploty Carnotova cyklu je limitována teplotou okolí. [15]

$$\eta_{\text{max}} = 1 - \left( \frac{T_2}{T_1} \right)$$

T1 je absolutní teplota vstupujícího plynu [K]
T2 je absolutní teplota výstupního plynu [K]

Palivový článek tedy získává energii chemickou reakcí, kdy lze tento vztah definovat jako poměr maximální možné energie přeměnitelné při slučování paliva a okyslíčovadla při daných podmínkách na elektřinu (představovaná změnou Gibbsovy volné energie, což je podíl energie soustavy schopný přeměny na jinou formu energie) ku sloučovacímu teplu za referenčních podmínek (25°C, 101325Pa), vyjádřeno matematicky [5], [15]:

$$\eta_{\text{max}} = \frac{\Delta G(T)}{\Delta H^0}$$

$\Delta H^0$ je entalpie reakce, která určuje spálené teplo paliva,
$\Delta G$ určuje energii, kterou lze přeměnit při elektrochemické reakci v energii elektrickou, jde o rozdíl volné entalpie výchozích látek a produktu reakce.

Je tedy teoreticky možné palivové články porovnávat s tepelným procesem a umístit je na horní hranici účinnosti v důsledku chemických přeměn paliva. Palivové články provozované při 80°C mají tedy maximální jistou teoretickou účinnost 80%, kdy palivový článek
získá veškerou možnou elektrickou energii v palivu obsaženém. Tato hodnota je srovnatelná s maximální teoretickou účinností spalovacího motoru při teplotě 500°C (za předpokladu, že výstupní teplo činí 85°C).

V ideálním systému by tedy účinnost palivového článku klesala s rostoucí teplotou tak jako klesá Gibbsova energie. To ale není jednoznačné, jelikož produkty spalování vysokoteplotních palivových článků (například SOFC kdy teploty dosahují 800 - 1000°C) lze dále využít za pomocí hybridního systému s turbínou k výrobě další užitečné elektrické energie.

4.6.3 Napěťová účinnost $\eta_V$

Udává poměr skutečného elektrického napětí ku teoreticky dosažitelnému elektrickému napětí. K výpočtu teoretického elektrického napětí se uvažuje počet elektronů účastnících se chemické reakce jedné molekuly paliva a Faradayovu konstantu, definovanou jako součin elementárního elektrického náboje a Avogadrovy konstanty. U polymerního (PEM-FC) palivového článku může činit maximální hodnoty 1,18V při účinnosti 80% a provozní teplotě 80°C. [5], [15]

$$\eta_V = \frac{\Delta V}{\Delta E_{rev}}$$

$\Delta V$ – provozní el. napětí
$\Delta E_{rev}$ – teoretické el. napětí

Účinnost je tedy závislá na proudovém zatížení elektrod. Z grafu voltampérové charakteristiky na obr. 16 lze sledovat, že nejvyšší napětí a tím i využití paliva je při nízkém zatížení.

**Obrázek 16: Voltampérová (V-A) charakteristika palivového článku.** [5]
Na obrázku 7 je patrná voltampérová charakteristika palivového článku, jejíž tvar ovlivňují následující kategorie čtyři nevratných změn (nevratné změny jsou konvertovány na teplo):

- Aktivační polarizace – je energií, která musí být překročena v důsledku spuštění chemické reakce mezi reaktanty.
- Ohmická polarizace – vyskytuje se v důsledku odporových (ohmických) ztrát v článku. Ztráty jsou způsobeny elektrolytem, elektrodami a svorkami článku.
- Koncentrační polarizace – v této oblasti jsou reaktanty spotřebovány rychleji, než mohou být dodávány (jedná se tedy o ztráty způsobené přepravou hmoty).
- Konverzí paliva – je ztráta způsobena průchodem paliva, které se neúčastnilo reakce.

U skutečného elektrického napětí tedy uvažujeme vliv ohmických ztrát a ztráty aktivačními a koncentračními polarizacemi. Palivové články produkují značnou elektrickou energii při vysokém proudovém zatížení, lze je tedy na úkor účinnosti a tedy vyšší spotřebě paliva krátkodobě přetížit a to až o násobky svého výkonu za předpokladu dostatečné dodávky paliva, odvodu vzniklých produktů a dodatečného chlazení.

4.6.4 Celková elektrochemická účinnost palivového článku $\eta_{FC}$

Je definována jako součin dílčích účinností:

$$\eta_{FC} = \eta_{Max} \cdot \eta_v \cdot U_f \cdot U_f' .$$

4.6.5 Účinnost celého systému s palivovým článkem

Je ovlivněna volbou systému, ve kterém bude palivový článek uspořádán. Celkový zdroj palivového článku se tedy skládá z jednotlivých subsystémů pro řízení a regulaci palivového článku. Ty ovšem činí parazitní ztráty a snižují jeho výslednou účinnost. Celkovou účinnost lze odvodit až po vyhodnocení údajů celého systému.
5 HYBRIDNÍ POHON S PALIVOVÝMI ČLÁNKY

Vysoká cena s poměrně velkým objemem a hmotností nádrží, vedou k nutnosti omezit instalovaný výkon ve vozidle pod hranici běžnou u vozidel se spalovacím motorem. Účinnost palivových článků klesá při vysokém zatížení a naopak roste při zatížení nízkém. Je to opakem charakteristiky spalovacích motorů. Navíc se vyskytují další nepříjemné, ale řešitelné provozní problémy kam patří provoz za mrazu, případně nutná doba uvedení palivových článků na provozní teplotu, bez níž by systém nepracoval správně.

Za těchto podmínek je jejich provoz nejlépe řešitelný v hybridním uspořádání – obecně v kombinaci palivového článku, akumulátoru, vysokokapacitním kondenzátoru a trakčního motoru obecně nazývaného (FCHEV Fuel Hybrid Cell Electric Vehicle). Zde palivový článek produkuje elektrickou energii, ukládá ji do akumulátorů a akumulovaná energie slouží k vykrytí potřebných výkonových špiček při rozjezdu a dynamice vozidla. Zabezpečí se tím plná účinnost a využije se rekuperaci kinetická energie vozidla při brzdění nebo jízdě z kopce.


Obrázek 17: Výkonové charakteristiky
a) paralelního hybridního pohonu, b) zážehového pohonu, c) elektromotoru. [18]
5.1 Hybridní vozidlo

Elektrické vozidlo (EV), neboli elektromobil, nemá v současnosti dostatečnou délku dojezdu pro mimoměstský provoz, protože je poháněn pouze bateriemi a dobíjení elektrických baterií z elektrické sítě si vyžaduje i několik hodin.

Z toho vyplývá, že (HEV Hybrid Electric Vehicle) koncepce, ve které se používá alternativní pohoná jednotka jako druhotný zdroj energie, umožňuje překonávat problémy spojené s konfigurací čistého elektromobilu. Pro srovnání paralelního hybridního, zážehového a elektrického motoru (sériového hybridního vozidla) jsou znázorněné výkonové charakteristiky na obr. 17.

Hybridní elektrické vozidlo (HEV) tedy rozšířuje využití elektrických vozidel (EV Electric Vehicle), kde sekundárním zdrojem energie je alternativní pohoná jednotka (APU Alternative Power Unit). Ta je zastoupena spalovacím motorem typu zážehového, vznětového, rotačního či turbínového.

Rozeznává se koncepce HEV:
1. Sériový hybridní systém.
2. Paralelní hybridní systém.

5.1.1 Sériové hybridní vozidlo

Sériový hybridní systém je prakticky (EV) elektrické vozidlo se zabudovaným generátorem a (APU) alternativní jednotkou v podobě například zážehového motoru. O pohon vozidla se stará pouze elektromotor. Vozidlo je napájeno elektrickou energií z elektrické baterie (akumulátoru) podobně, jako elektromobil do doby kdy baterie dosáhne předurčeného stavu vybití. V tomto stádiu se zapne APU, která je mechanicky spojená s generátorem a zůstává v činnosti do doby, kdy je baterie dobitá na svoji plnou kapacitu. Jehož APU není přímo spojená k hnacímu systému, může pracovat v optimálním režimu což, zlepšuje ekonomičnost chodu a sníží emise oproti konvenčním dopravním prostředkům s pohonem pouze za pomocí spalovacího motoru. [18]
5.1.2 Paralelní hybridní vozidlo

Paralelní hybridní systém je spojení APU, které je schopno vytvářet hynou sílu spalovacího motoru a elektromotoru, který zastává i funkci generátoru. Spalovací motor je k elektromotoru mechanicky propojen přes spojku (u kombinovaného) a trvale u paralelního. Elektromotor je hřídelí spojen s převodovým ústrojím a pomocí diferenciálu je přenášen krouticí moment na kola vozidla. Pokud je pohoná jednotka APU v provozu, řídící jednotka rozděluje energii mezi hnačník a baterie. V případě že vozidlo zrychluje, jsou v činnost uvedeny oba celky a výsledný krouticí moment je dáni jejich součtem. Paralelní hybridní systém je složitější než sériový, kde elektromotor a APU nemusí být mechanicky spojený s hnačním hřidelem a diferenciálem. Jelikož pracuje pouze APU, která zabezpečuje mechanický vstup, nemohou být palivové články pro tento systém pochopeny využity. [18]

Obrázek 18: Hybridní sériové uspořádání vozidla.

Obrázek 19: Hybridní paralelní uspořádání vozidla.
5.1.3 Hybridní vozidlo s palivovými články


Obrázek 20: Hybridní uspořádání vozidla s palivovým článkem.

5.2 Hlavní části pohonu vozidla s palivovými články

Celková konstrukce vozidla s palivovými články se skládá z hlavních částí, kam patří: systém s palivovým článkem, nádrž, regulační a řídící elektronika, akumulátory případně výkonové kondenzátory a elektromotor.

5.2.1 Systém s palivovým článkem PEMFC

Soubor palivového článku je jednotka pro přeměnu energie paliva na elektrickou, která ke svému provozu potřebuje množství jednotlivých subsystémů pro řízení a regulaci provozu palivového článku. Za tyto subsystémy jsou považovány systémy chlazení článku, dopravy a zvlhčování reaktantů (čili paliva a okysličovadla), kontrolních systémů, případně systémů přípravy paliva reformací fosilních paliv. [15]
5.2.1.1 Vodíkový systém palivového článku PEMFC


Celý systém je řízen mikropočítačem tak, aby průběh reakce byl v optimálních provozních hodnot daného palivového článku. Musí být také neprodyšně utěsněn, aby se zabránilo úniku media a nedošlo k případnému poškození membrány palivového článku. [15]

Obrázek 21: Zjednodušené schéma systému s palivovým článkem vodík / vzduch. [15]
5.2.1.2 Reformace paliva při použití palivového článku PEMFC

Vysoký objem nádrží s vodíkem v kapalném či tekutém stavu klade určitá omezení zvláště u konstrukcí motorových vozidel. Je tedy možné vodík získávat extrahováním určitých paliv obsahujících vodík ve složeních (kam patří metanol, nafta, petrolej) za pomocí chemického procesu zvaného reformace paliva.

Reformaci paliva pro palivové články lze provádět dvěma způsoby a to buď parní reformací, nebo parciální oxidací. Zatímco parní reformace je vhodná pro úpravu zemního plynu, pro kapalné paliva je vhodnější parciální oxidace. Reformace paliva má však spoustu negativních dopadů kam patří nižší životnost palivového článku, složitost a tím neefektivnost reformace, což snižuje účinnost celého systému. [15]

5.2.2 Elektromotor

Jedná se o točivý elektrický stroj, sloužící k přeměně elektrické energie v mechanickou. Princip je založen na vzájemném silovém působení magnetických a elektromagnetických polí vytvořených průchodem elektrického proudu vinutím. Elektromotor se skládá z pevné vnitřní části statoru a pohyblivé části rotoru.

Elektromotor užívaný v HEV zastává dva režimy provozu a to motorický nebo režim rekuperace energie. Při rekuperaci pracuje elektromotor v režimu generátoru, kdy mění mechanickou energii zpět v elektrickou a ta je akumulována.

Elektromotory užívané v konstrukcích HEV vozidel jsou:

- Stejnosměrný s cizím buzením
- Asynchronní motor
- Spínaný regulační motor
- Synchronní motor s permanentními magnety

Elektromotory mají běžně účinnost vyšší jak 90%, odpadá také nutnost převodového mechanismu zabudováním elektromotoru přímo do kol vozidla.
5.2.3 Výkonová řídící elektronika

Výkonová řídící jednotka obsahuje měnič (DC/AC) stejnosměrného proudu na střídavý a slouží k napájení pohonu nejčastěji používaného typu asynchronního elektromotoru. Za pomocí měniče lze elektromotor regulovat v širokém výkonovém rozsahu. Dále je zde obsažen měnič DC/DC stejnosměrného na stejnosměrný o nižší hodnotě a to 12V pro napájení palubní sítě vozidla. Přívod od generátoru či palivového článku dosahuje hodnoty stovek voltů.

5.2.4 Akumulátor

Jedná se o zařízení na opakované uchování elektrické energie, jehož princip je založen na elektrochemických změnách. Pro HEV se používají trakční akumulátory, které se liší od standardních autobaterií. Autobaterie je konstrukčně navržena tak, aby dodala potřebný výkon pro start vozidla. Dlouhé či opakované vybíjení jí může poškodit.


V současné době jsou nejvíce používány akumulátory typu Li-ion, které nejlépe splňují požadavky vozidel s elektrickou trací. Mezi hlavní výhody oproti ostatním patří jejich vysoká hustota uchované energie (tzn. nízká hmotnost) a účinnost provozu.

Podle principu rozzeznáváme akumulátory typu:
- Olověný
- NiCd
- NiMH
- Li-ion
- LiFePO₄

5.2.5 Výkonový kondenzátor

Výkonový kondenzátor (tzv. ultracapacitor) je zařízení schopné akumulovat a následně dodat velké množství elektrické energie za krátký čas. Zařazením výkonového kondenzáto-
ru do systému HEV se eliminuje konstrukční nedostatek trakčních baterií. Trakční baterie nejsou zkonstruovány k vysokým proudovým odberům potřebných k prudkým akceleracím HEV. Hlavní rozdíl oproti akumulátoru činí fakt, že ukládají elektrickou energii v podobě elektrického náboje. Lze je vícekrát dobíjet a využít jejich uchovanou elektrickou energii. Mají však nízký poměr uložené energie, což je činí značně hmotně.

5.3 Přínosy a překážky palivových článků u motorových vozidel

Přínosy:

- **Vysoká účinnost transformace chemické energie na energii elektrickou**
  Dosahující maximálních teoretických hodnot až 83% účinnosti. Účinnost celého systému združené elektrické energie se s ohledem na vlastnosti paliva a typu konstrukce se pohybuje v hodnotách okolo 40 - 60%.

- **Při provozu v hybridním uspořádání vozidla zajišťuje vysokou hospodářnost**
  Elektrickou energii lze akumulovat a účelně využívat k pohonu motorového vozidla. Díky tomu může palivový článek pracovat v optimálních podmínkách vysoké účinnosti s možností rekuperace kinetické energie vozidla. To vše zajistí nízkou spotřebu paliva.

- **Eliminace pohyblivých částí**
  Samotný palivový článek nemá žádné pohyblivé části. Systém pracuje poměrně bezhlučně a s vysokou spolehlivostí provozu.

- **Poměrně nízká hmotnost systému s palivovým článkem**
  Ve srovnání s elektromobilem využívajícím pohonu čistě za pomocí akumulátorů.

- **Minimální nebo žádné emise škodlivých plynů**
  Vše záleží na vhodné volbě nosiče energie v podobě vodíku, který je chemicky spalován v palivovém článku.

- **Možnost využití různých druhů paliv**
  Vodík lze teoreticky přímo vyrábět ve vozidle za pomocí reformace paliva.

- **Schopnost snášet značná přetížení**
  Palivový článek nemusí být dimenzován na nejvyšší potřebný výkon ve vozidle, zle ho po kratkou dobu přetěžovat.

- **Soubor palivového článku lze konstruovat v širokém rozmezí potřebných výkonů**
Překážky:
- **Vysoké investiční náklady na výrobu palivových článků.**
  - U nejvíce používaného typu palivového článku s polymerní membránou (PEM-FC) je jedná o drahé membrány s obchodním názvem nafion. Jejich kyselé prostředí vede k nutnosti použití katalyzátorů drahých kovů v podobě platiny.
- **Prozatím nevyhovující ekonomika provozu z ekologického pohledu**
  - Vysoké ztráty při výrobě nosiče energie za pomocí obnovitelných zdrojů, distribuci, skladování až po konečnou přeměnu na elektrickou energii.
- **Skladování čistého vodíku**
  - Vodík je velmi reaktivní a hořlavý prvek. Problémy s bezpečností a hmotností.
- **Složitý systém energetického zdroje s palivovým článkem**
  - Soubor palivového článku o vysokých výkonech vyžaduje konstrukčně poměrně složitou regulaci jeho provozu.
- **Dlouhá doba uvedení do provozu**
  - Tento jev je zapříčiněn danou provozní teplotou palivového článku. Pro zkrácení doby se musí palivový článek zahřívat externím zdrojem tepla, což způsobuje ztrátu energie.
- **Kritické teploty okolo bodu mrazu**
  - Teploty pod bodem mrazu mohou zapříčinit zamrzání odpadního produktu konkrétně vody vzniklé reakcí.
- **Účinnost klesá s dobou provozu**
  - Postupem provozu dochází v palivovém článku k zanášení póru obou elektrod, což má za následek postupné snížování účinnosti. Reaktanty vstupující do článku nemají možnost účastnit se reakce.
- **Nízká životnost**
  - Je omezena klesající účinnosti s dobou provozu. V určité fázi již palivový článek není schopen účelně pracovat.
- **Citlivost na kvalitu paliva**
  - Čistý vodík v sobě nesmí mít příměsi nečistot, jež by měly za následek zanášení póru elektrod. Reformované paliva obsahují značnou část plynů ve formě oxidů uhelnatého, který způsobuje otravu katalyzátorů.
- **Infrastruktura**
  - Vodík jako palivo sebou nese problematicu výroby, skladování, dopravy.
5.4 Praktické využití palivových článků u motorových vozidel

5.4.1 TRIHYBUS

Je česko-německý trojitě hybridní autobus na vodíkový pohon. Autobus byl vyvinutý a realizováný Ústavem jaderného výzkumu Řež. První pravidelnou linku si po dobu výstavy odbyl v r. 2010 na Mezinárodním strojírenském veletrhu v Brně. Tankování bylo na ukáz-kách řešeno jednoduchým přepouštěním plynu ze svazků tlakových lahví. Primárním zdro-jem energie jsou tři vodíkové palivové články, z nichž je napájen elektromotor. Dalšími dvěma zdroji energie jsou Li-on baterie a výkonné kondenzátory, tzv. ultrakapacitory. Systém je doplněn rekuperací energie získané při brzdění vozidla. [18]

Výkon elektrického trakčního motoru je 120 kW, vodíkový palivový článek má výkon 48 kW. Maximální rychlost je elektronicky omezena na 65 km/h. Zásobníky vodíkového paliva jsou umístěny na střeše autobusu. [19] Na jedno naplnění má autobus dojezd okolo 300 km.

Obrázek 22: Trihybus, celkový pohled na vozidlo (vlevo) a detail systému s palivovým článkem (vpravo).

5.4.2 Mercedes-Benz Citaro FuelCELL

Nový autobus na palivové články Mercedes-Benz Citaro FuelCELL-hybrid jezdí se dvěma systémy palivových článků. Pohon je hybridní s lithiovými bateriemi
Obrázek 23: Citaro FuelCELL, celkový pohled na vozidlo (vlevo) a detail (vpravo).


5.4.3 New Holland Hydrogen

Německý výrobce traktorů New Holland přistoupil ke zkušební výrobě traktorů na vodíkový pohon. Kapacita vodíkových nádrží je 8,2 kg. Výkon článků je 75 kW. Je vybaven dvěma elektromotory, každý o výkonu 100 kW, jež mají maximální točivý moment 1200 Nm. Baterie má kapacitu 12kWh, 300V. Max. rychlost traktoru je 50 km/h.

Obrázek 24: New Holland T6000, celkový pohled na vozidlo (vlevo) a schéma (vpravo). [20]
6 ZÁVĚR

V bakalářské práci jsem se zabýval problematikou využití palivových článků u motorových vozidel. Palivové články patří do alternativních zdrojů “čisté” elektrické energie, jež by v budoucnu mohla řešit problémy se stoupající cenou kapalných fosilních paliv. K tomuto předpokladu musejí být splněny základní požadavky levné výroby nosiče energie.

V práci je zejména pojednáno o výrobě vodíku různými metodami, o skladování a distribuci vodíku, o typech palivových článků, jejich základních charakteristikách, konstrukčních rozdílech a v neposlední řadě o účinnosti článků. Jsou upřesněny hlavní konstrukční rozdíly vůči vozidlům s klasickým spalovacím motorem. Čtenáři tak práce umožní získat základní přehled o tomto typu alternativního pohonu.

Vyhodnotí-li se výroba vodíku za pomoci elektrolýzy, včetně následného uskladnění, vzhledem k ostatním zdrojům energie, pak v souhrnu vozidlo poháňené na bázi vodíku zatím nemá výslednou účinnost vyšší než vozidlo s klasickým spalovacím motorem. Stejně tak je tomu i po stránce ekonomické. Je tedy otázkou, do jaké míry intenzivní vývoj na tomto poli pokročí a bude moci poskytnout ekonomicky výhodné vodíkové palivo.

Ostatně i výroba samotných palivových článků je nepoměrně nákladná. Nejčastěji používaný typ s polymerní membránou vyžaduje totiž katalyzátor potažený platinou, čímž stoupá cena článků. Současně cenu zařízení zvyšují i některá ochranná patentová práva.

Může se totiž předpokládat, že o širším rozšíření v blízké budoucnosti nejблиžších desetiletí budou nakonec rozhodovat důvody převážně ekonomické.
7 SEZNAM POUŽITÉ LITERATURY


8 SEZNAM OBRÁZKŮ

Obr. 1 Graf zastoupení zdrojů výroby vodíku v celosvětovém měřítku pro rok 2008 [8] . 10
Obr. 2 Porovnání potřebného objemu pro uložení 4kg vodíku [14] ...................... 17
Obr. 3 Konstrukce kompozitní nádrže pro skladování vodíku. [6] ...................... 18
Obr. 4 Řez kapalnou nádrži vodíku (technologie Linde Gas) [14] ...................... 19
Obr. 5 Graf porovnání využitelné energie vozidel na konci cyklu [17] ...................... 24
Obr. 6 Transformace energie [5] ................................................................. 25
Obr. 7 Schéma činnosti palivového článku [10] ........................................... 27
Obr. 8 PEMFC článek [21] ........................................................................ 29
Obr. 9 Elementární palivový článek s alkalickým elektrolytem [16] ...................... 32
Obr. 10 Elementární palivový článek s polymerní membránou [23] .................... 34
Obr. 11 Elementární palivový článek s kyselinou fosforečnou. [22] .................... 36
Obr. 12 Elementární palivový článek s tavenými uhličitany [22] ....................... 37
Obr. 13 Elementární palivový článek typu SOFC [22] .................................... 39
Obr. 14 Tubusové uspořádání SOFC – Siemens Westinghouse ....................... 40
Obr. 15 Srovnání účinnosti výroby elektrické energie chemickou reakcí [5] ...... 40
Obr. 16 Voltampérová (V-A) charakteristika palivového článku. [5] ................... 42
Obr. 17 Výkonové charakteristiky [18] ........................................................... 44
Obr. 18 Hybridní sériové uspořádání vozidla ................................................. 46
Obr. 19 Hybridní paralelní uspořádání vozidla ................................................. 46
Obr. 20 Hybridní uspořádání vozidla s palivovým článkem ............................ 47
Obr. 21 Zjednodušené schéma systému s palivovým článkem vodík /vzduch [15] ... 48
Obr. 22 Trihybus, celkový pohled na vozidlo [18] ........................................ 53
Obr. 23 Citaro FuelCELL, celkový pohled na vozidlo [20] ............................. 54
Obr. 24 New Holland T6000, celkový pohled na vozidlo [24] .......................... 54
9 SEZNAM TABULEK

Tab. 1 Parametry vodíkového paliva různého skupenství ve srovnání [15] ……………… 16
Tab. 2 Charakteristiky nejčastěji používaných hydridů [15] ……………………………….. 20
Tab. 3 Stručný přehled rozdělení palivových článků [15], [22] ……………………………. 30