Hodnocení výkruku kuřat s využitím nášlapných vah

Diplomová práce

Vedoucí práce: doc. Dr. Ing. Zdeněk Havlíček

Vypracovala: Bc. Tereza Bendeová
Čestné prohlášení

Prohlašuji, že jsem práci Hodnocení výkrmu kuřat s využitím nášlapných vah vypracovala samostatně a veškeré použité prameny a informace uvádím v seznamu použité literatury. Souhlasím, aby moje práce byla zveřejněna v souladu s § 47b zákona č. 111/1998 Sb., o vysokých školách ve znění pozdějších předpisů a v souladu s platnou Směrnici o zveřejňování vysokoškolských závěrečných prací.

Jsem si vědoma, že se na moji práci vztahuje zákon č. 121/2000 Sb., autorský zákon, a že Mendelova univerzita v Brně má právo na uzavření licenční smlouvy a užití této práce jako školního díla podle § 60 odst. 1 autorského zákona.

Dále se zavazuji, že před sepsáním licenční smlouvy o využití díla jinou osobou (subjektem) si vyžádám písemné stanovisko univerzity, že předmětná licenční smlouva není v rozporu s oprávněnými zájmy univerzity, a zavazuji se uhradit případný příspěvek na úhradu nákladů spojených s vznikem díla, a to až do jejich skutečné výše.

V Brně dne:

..

podpis
PODĚKOVÁNÍ

ABSTRAKT

Cílem diplomové práce bylo vyhodnotit data, která jsme získali z nášlapné váhy umístěné přímo na hale ve vybraném podniku. Nášlapná váha spolu s teploměrem a vlhkoměrem zaznamenává hmotnost kuřat, počty zvážených kuřat, teplotu, vlhkost a uniformitu. Získaná data o daných turnusech jsou od září roku 2014 až do března roku 2016 od obou typů hybridů. Z výsledků nám vyšlo, že hybrid ROSS 308 byl častěji nad růstovou křivkou, v letních měsících měl lepší přírůstky a nejvyšší uniformitu. Hybrid COBB 500 měl lepší přírůstky v zimním období a jeho uniformita byla vyšší v přechodném a zimním období. Dle korelačního koeficientu se nám potvrdil fakt, že s přibývající hmotností se snižuje počet kuřat na váze. Průměrný úhyn se pohyboval okolo 3 %, výjimku tvořil turnus 6/2015, kdy byl úhyn 4,8 %.

Klíčová slova: drůbež, brojler, ROSS 308, COBB 500, nášlapná váha, hmotnost kuřat, technika chovu

ABSTRACT

The aim of the diploma thesis was to evaluate the data gained from a weighine-machine located right in the hall of the selected company. The weighine-machine together with thermometer and hygrometer measures the weight of chickens, numbers of chickens weighed, temperature, humidity and uniformity. The data acquired about the given batches are from September 2014 to March 2016 from both types of hybrids. The results show that hybrid ROSS 308 occurred more often above the growth curve, in summer months it had better daily weight gain and the highest uniformity. Hybrid COBB 500 had better increase in winter and its uniformity was higher in temporary and winter period. According to the correlation analysis, the fact was confirmed, that with the growing weight the number of chickens lowers. The average mortality was around 3 %, the exception was the batch 6/2015 when the mortality was 4,8 %.

Keywords: poultry, broiler, ROSS 308, COBB 500, weighine-machine, weight of chickens, breeding technology
OBSAH

1 ÚVOD ... 7
2 CÍL PRÁCE ... 9
3 LITERÁRNÍ REŠERŠE .. 10
 3.1 Význam chovu ... 10
 3.2 Chov drůbeže v ČR ... 10
 3.2.1 Vývoj počtu kuřat na výkrm 2001 - 2014 .. 12
 3.3 Hybridi mezidruhových plemen ... 13
 3.3.1 ROSS 308 .. 13
 3.3.2 COBB 500 .. 14
 3.3.3 Optimální růstová křivka ROSS 308 a COBB 500 14
 3.3.4 Líhně, chovatelé a jatka brojlerů ... 15
 3.4 Ustájení brojlerů .. 16
 3.4.1 Vzduch .. 16
 3.4.2 Teplota vzduchu .. 18
 3.4.3 Vlhkost .. 19
 3.4.4 Světelný režim .. 19
 3.4.5 Technika krmení .. 20
 3.5 Složení krmiva ... 21
 3.5.1 Voda .. 21
 3.5.2 Sušina .. 22
 3.6 Komponenty krmných směsí ... 25
 3.6.1 Obiloviny ... 25
 3.6.2 Luštěniny ... 27
 3.6.3 Olejoviny .. 29
 3.6.4 Rostlinné oleje .. 29
 3.6.5 Sušená krev .. 30
1 ÚVOD

Drůbežnictví má v České republice mnohaletou tradici a skýtá celou řadu výhod. Mezi ty nejzásadnější patří především fakt, že drůbežnictví není úzce spjato s půdou, tudíž je snazší se samotným chovem drůbeže vůbec začít. Dalšími výhodami jsou pak krátký cyklus výkrmu a velká výtěžnost jatečných těl. Paralelně s chovatelem brojlerů fungují výrobní provozy pro výrobu krmiv a dále jatka pro porážku. Provoz těchto tří částí nám efektivně vytváří celek, který nabízí své služby na trhu.

Z nejnovější dostupné situační a výhledové zprávy z roku 2014 vyplývá, že v porovnání s rokem 2013 klesl stav kuřat ve výkrmu o 1,6 %. Spotřeba masa byla 25,2 kg na osobu/rok, přičemž v roce 2011 to bylo o 2,8 % méně. Co se týče zahraničního obchodu, zde zaznamenáváme pozitivní fakt, že se vývoz drůbežího masa oproti dřívějšímu se projevuje naopak mírně zvýšený.

Úspěšný chov drůbeže závisí na dodržení několika zásad, které mohou ovlivnit jeho kvalitu a vývoj. Mezi ty základní patří kvalitní ustájení drůbeže, s čímž souvisí vhodná podestýlka, světelný režim, vlhkost, teplota a mnoho jiných ukazatelů. Dalším předpokladem je volba vhodného brojlerového hybrida, který má dobrou užitkovost a odpovídající přírůstky. A posledním podmínkou, ovlivňující chov v celém jeho období, je kvalitní výživa drůbeže. Při zkrmování nevhodného krmiva dochází k onemocnění zvířat, v horším případě k velkému úhynu. Můžeme si položit otázku, zda jsme dostatečně schopni dopřát kuřatům kvalitní život po tak krátkou dobu jako je jejich výkrm.

žaludkem, kde dochází k podrcení a rozmělnění potravy. Zatímco ve volně přírodě můžeme vidět ptáky polykat drobné kamínky, které jim s rozmělněním potravy pomohou, drůbeži ve velkochovech je z tohoto důvodu podáván drsený vápenec neboli grit.

Dalším specifikem je spojené trávicí, močové a pohlavní soustavy tzv. kloaky. Trusem ptáků je tedy vlastně trus a moč dohromady.

V diplomové práci se v literárním přehledu zabýváme požadavky pro výkrm drůbeže. A v praktické části hodnotíme přírůstky, počty nášlapů, teplotu, vlhkost, uniformitu a úhyny na vybrané farmě v Olomouckém kraji.
2 CÍL PRÁCE

Cílem práce bylo vypracovat literární přehled o požadavcích na výkrm drůbeže. Literární přehled zahrnuje informace o ustájení, výživě a chovu brojlerů, kteří budou následně hodnoceni.

Hodnocení proběhlo na základě měření nášlapných vah, které jsou umístěny v několika podnicích spolupracujících se společností Mikrop. Bylo provedeno měření přírůstků, teplot a dalších jiných parametrů, které jsou následně vyhodnoceny.
3 LITERÁRNÍ REŠERŠE

3.1 Význam chovu

Chov drůbeže patří mezi rozvíjející se odvětví, které není úzce spjato s půdou jako například chov skotu, koní či koz. Dalším významným kladem je také vysoký reprodukční potenciál a vysoká užitkovost drůbeže.

Oblíbenost masa u spotřebitelů ovlivňuje zejména obsah bílkovin, tuků a jiných dalších látek. Drůbeží maso obsahuje nízký obsah tuku a naopak vysoký obsah bílkovin, proto je oblibenější než masa vepřová a hovězí. Tuk z drůbežího masa je příznivý pro lidské tělo jelikož obsahuje nízký obsah mastných kyselin a vysoký obsah nenasycených (Tůmová). Nenasycené mastné kyseliny jsou pro naše tělo důležité, protože si je sami nedokážeme vytvořit. Zmíněné nenasycené kyseliny mají příznivý vliv na srdce, cévy, klouby a imunitu (Arndt, 2008). Drůbeží maso je též bohaté na minerální látky, zejména fosfor, železo a draslík. Pro tyto vlastnosti oblibenost stále roste, jelikož se stále více populace snaží jíst zdravě.

Průměrná spotřeba drůbežího masa v naší republice je přibližně 24 kg/osoba/rok. Ze 79 % se jedná o maso brojlerů (Holoubek, 2002). Drůbeží maso je z hlediska doby výkrmu a složením krmných dávek bezkonfliktní potravinou budoucnosti. Za krátkou dobu výkrmu se do masa nedostane mnoho nežádoucích látek a tím pádem i do lidského organismu (Oplt, 2001).

3.2 Chov drůbeže v ČR

Historie chovu v České republice sahá do daleké minulosti, ale velkochovy se začaly rozvíjet až ve 20. století. V roce 1923 proběhla soutěž snášky vajec v Uhřiněvsi za podpory České zemědělské rady, která dala impuls k počátku velkochovů. Typická pro toto období byla nízká užitkovost zvířat a výroba drůbežího masa stála pouze na masa z hus a kachen. V období před válkou mělo drůbežnictví pouze malý podíl na celkové produkci, přibližně 3,6 %. Spotřeba masa se pohybovala okolo 2,5 kg na obyvatele/rok. Ve všech krajích existovaly podniky, které nakupovaly a zpracovávaly drůbeží maso a také u některých probíhala líheň.
kuřat. V roce 1956 vznikla správa pro drůbež a tyto podniky prováděly činnost pod ní.

Významným rokem byl rok 1959, jelikož došlo ve šlechtitelském programu k velkému objevu. Šlechtitelská stanice Nichols - Lohmann vyšlechtila brojlerová kuřata, která za 84 dní dosáhla hmotnosti 1,5 kg při spotřebě 3,2 kg krmiva, oproti našim rodajlendkám to bylo za stejnou dobu o 0,4 kg na váze více a o 3,4 kg krmiva méně. To byl jeden z důvodů, proč se k nám začaly od šedesátých let dovážet hybridní kuřata pro výkrm. Na tento popud byl v roce 1961 v obci Chrustenice zřízen podnik pro šlechtění drůbeže. O dva roky později vzniká největší podnik Xaverov o. p., který se zabývá rozmnožováním drůbeže masného typu a který se pak po dalších deseti letech sloučil s podnikem v Chrustenicích. Ti se pak společně zabývaly rozmnožováním slepic masného, nosného typu a krůt.

Od osmdesátlých let se úroveň českého drůbežnictví přibližila k úrovni vyspělých zemí z hlediska odbytu, avšak úroveň technologie a zmodernizování byla stále na nízké úrovni. V roce 1999 se výrazně zvýšila spotřeba masa na 20,5 kg/obyvatel/rok (Oplt, 2001).

V současné době je několik dalších podniků, které se kromě chovu brojlerů a nosnic zabývají také šlechtěním, chovem prarodičů, lihni, výkrmem kachen, hus, krůt nebo pernatou zvěří. V České republice je evidováno také několik zpracovatelů živočišných produktů, které musí být schváleny a zaregistrovány pro obchod s EU (Zimová, 2015).
3.2.1 Vývoj počtu kuřat na výkrm 2001 - 2014

3.3 Hybridi mezidruhových plemen

Používaná plemena brojlerů jsou hybridi mezidruhových plemen určených k výkrmu a produkcji jatečného těla. Kříženci mají světlou barvu, vynikají dobrými přírůstky, konverzí a vysokou výtěžností. Konverze nám vyjadřuje, kolik kg krmiva kuře spotřebuje na tvorbu 1 kg vlastního těla. Stavba těla bývá mohutná s větší prsní svalovinou.

Nejčastěji používanými hybridy je ROSS 308 a COBB 500. Optimální výkrm by měl proběhnout do 42. dne života s úhynem do 6–7 %. Výtěžnost těla neboli odečtení opracovaného těla od živé váhy je přibližně kolem 80 % (RS Farma, 2015).

Výkrm je založen na principu v co nejkratší době vykrmit brojlera do určité hmotnosti zejména tedy prsní svalovinu. Zvířata dostávají krmné směsi navržené přímo dle jejich požadavků (Wikipedie, 2015).

3.3.1 ROSS 308

Brojler Ross 308 je svalnatý brojler s velkou výtěžností těla a s nízkou konverzí krmiva. V chovech nesexovaných hejn bývá průměrný denní přírůstek v 7. dnu života 20,93 g, ve 14. dnu 42 g a v 21. dnu 64,1 g. Ross 308 se nejčastěji vykrmí do 35. dne života, kdy dosahuje hmotnosti 2144 g s konverzí krmiva 1548 g (Aviagen, 2014).
3.3.2 COBB 500

Cobb 500 je šlechtěn na vysokou výtěžnost těla s nízkou konverzí krmiva. Pro výkrm tohoto hybrida lze použít levnější krmivo obsahující méně živin (Fowls Trade, 2014).

3.3.3 Optimální růstová křivka ROSS 308 a COBB 500

Tabulka 1: Optimální růstová křivka

<table>
<thead>
<tr>
<th>věk (dny)</th>
<th>Ross 308</th>
<th>Cobb 500</th>
<th>věk (dny)</th>
<th>Ross 308</th>
<th>Cobb 500</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>42</td>
<td>42</td>
<td>25</td>
<td>1 226</td>
<td>1 265</td>
</tr>
<tr>
<td>1</td>
<td>56</td>
<td>55</td>
<td>26</td>
<td>1 309</td>
<td>1 355</td>
</tr>
<tr>
<td>2</td>
<td>72</td>
<td>71</td>
<td>27</td>
<td>1 393</td>
<td>1 447</td>
</tr>
<tr>
<td>3</td>
<td>89</td>
<td>89</td>
<td>28</td>
<td>1 479</td>
<td>1 541</td>
</tr>
<tr>
<td>4</td>
<td>109</td>
<td>109</td>
<td>29</td>
<td>1 567</td>
<td>1 637</td>
</tr>
<tr>
<td>5</td>
<td>132</td>
<td>131</td>
<td>30</td>
<td>1 656</td>
<td>1 735</td>
</tr>
<tr>
<td>6</td>
<td>157</td>
<td>156</td>
<td>31</td>
<td>1 746</td>
<td>1 833</td>
</tr>
<tr>
<td>7</td>
<td>185</td>
<td>184</td>
<td>32</td>
<td>1 836</td>
<td>1 931</td>
</tr>
<tr>
<td>8</td>
<td>217</td>
<td>216</td>
<td>33</td>
<td>1 928</td>
<td>2 030</td>
</tr>
<tr>
<td>9</td>
<td>251</td>
<td>251</td>
<td>34</td>
<td>2 020</td>
<td>2 129</td>
</tr>
<tr>
<td>10</td>
<td>289</td>
<td>289</td>
<td>35</td>
<td>2 113</td>
<td>2 228</td>
</tr>
<tr>
<td>11</td>
<td>330</td>
<td>330</td>
<td>36</td>
<td>2 207</td>
<td>2 326</td>
</tr>
<tr>
<td>12</td>
<td>375</td>
<td>375</td>
<td>37</td>
<td>2 300</td>
<td>2 424</td>
</tr>
<tr>
<td>13</td>
<td>422</td>
<td>424</td>
<td>38</td>
<td>2 394</td>
<td>2 521</td>
</tr>
<tr>
<td>14</td>
<td>473</td>
<td>477</td>
<td>39</td>
<td>2 488</td>
<td>2 618</td>
</tr>
<tr>
<td>15</td>
<td>527</td>
<td>532</td>
<td>40</td>
<td>2 581</td>
<td>2 715</td>
</tr>
<tr>
<td>16</td>
<td>585</td>
<td>590</td>
<td>41</td>
<td>2 675</td>
<td>2 811</td>
</tr>
<tr>
<td>17</td>
<td>645</td>
<td>651</td>
<td>42</td>
<td>2 768</td>
<td>2 907</td>
</tr>
<tr>
<td>18</td>
<td>709</td>
<td>715</td>
<td>43</td>
<td>2 861</td>
<td>3 002</td>
</tr>
<tr>
<td>19</td>
<td>775</td>
<td>783</td>
<td>44</td>
<td>2 954</td>
<td>3 097</td>
</tr>
<tr>
<td>20</td>
<td>844</td>
<td>855</td>
<td>45</td>
<td>3 046</td>
<td>3 192</td>
</tr>
<tr>
<td>21</td>
<td>916</td>
<td>931</td>
<td>46</td>
<td>3 137</td>
<td>3 286</td>
</tr>
</tbody>
</table>
3.3.4 Líhně, chovatelé a jatka brojlerů

Mezi největší zaregistrované líhně brojlerů v ČR patří:
- ABRO Zdražilek, Hrušovany pod Jeviškou
- BEST s.r.o., Opava
- MACH DRŮBEŽ a.s., Litomyšl
- MTD Ústrašice
- Výkrm Třebíč s.r.o., Chropyně
- XAVERgen a.s., Brno a Pardubice (Zimová, 2015)

Mezi největší zaregistrované chovatele brojlerů v ČR patří:
- BEST s.r.o., Opava
- MACH DRŮBEŽ a.s., Litomyšl
- XAVERgen a.s., Pardubice
- LUKROM s.r.o., několik hospodářství
- Vodňanské kuře, s.r.o., několik hospodářství (Zimová, 2015)

Mezi největší zpracovatele drůbežího masa patří:
- Vodňanské kuře a.s., Modřice
- Drůbež CZ, s.r.o., Kunštát
- RABBIT Trhový Štěpánov a.s., Jevičko
- Drůbežářský závod Klatovy a.s., Klatovy (SVS, 2016)
3.4 Ustájení brojlerů

Ustájení brojlerů ve velkochovech funguje v drůbežářské hale (stáji). Stavby jsou bez oken, aby se zamezila možnost vnínutí myší, ptáků a škodlivého hmyzu z venkovního okolí (Výmola, 1995).

Nejdůležitějším a podstatným vybavením haly je ventilace. Chovatel by měl zajistit přísun čerstvého, kvalitního vzduchu, proudícího přibližně ve výšce hlav chovaných kuřat, tj. cca 25 cm nad zemí. Nároky na teplotu se s růstajícím věkem kuřat mění, od teplejšího po chladnější vzduch. Společně s ventilací lze využívat i snímače amoniaku, oxidu uhličitého, teploty a vlhkosti, které nám snímají jejich hodnotu. Tu pak můžeme korigovat ventilací (Aviagen, 2009).

3.4.1 Vzduch

Kvalitní vzduch je základní stavební kámen pro život drůbeže. Kvalita vzduchu se odvíjí od množství amoniaku, oxidu uhličitého a vlhkosti (Kulovaná, 2002).

Hlavními nebezpečnými látkami, které kolují v prostoru haly, jsou prach, oxid uhličitý, oxid uhelnatý, vodní páry a amoniak. Tyto látky ve velkém množství snižují užitkovost brojlerů, zhoršují schopnost dýchání a celkově poškozují tělo drůbeže (Aviagen, 2009). Kuřata spotřebovávají kyslík a vydechují oxid uhličitý, kterého se zbavujeme vhodnou ventilací. Ta nám do objektu přivede čerstvý vzduch a odvede oxid. Ventilaci lze korigovat obsah amoniaku, který se vytváří z vlhké podestýlky, proto je nutné nastavit vhodnou teplotu a vlhkost vzduchu (Aviagen, 2010).
Tabulka 2: Vlivy nebezpečných látek

<table>
<thead>
<tr>
<th>nebezpečná látka</th>
<th>hodnoty poškozující zdraví</th>
</tr>
</thead>
<tbody>
<tr>
<td>amoniak</td>
<td>>10 ppm poškozuje plíce</td>
</tr>
<tr>
<td></td>
<td>>20 ppm zvýšená citlivost na respirační onemocnění</td>
</tr>
<tr>
<td></td>
<td>>50 ppm snížení užitkovostí</td>
</tr>
<tr>
<td>oxid uhličitý</td>
<td>>3500 ppm edémova choroba, případně smrt</td>
</tr>
<tr>
<td>CO</td>
<td>100 ppm snížení vázání kyslíku, případně smrt</td>
</tr>
<tr>
<td>prach</td>
<td>při větší hustotě dochází k poškození dýchacího aparátu</td>
</tr>
<tr>
<td>vlhkost</td>
<td>při teplotě > 29 °C a > 70% vlhkosti se snižuje růst</td>
</tr>
</tbody>
</table>

(zdroj: Aviagen, 2009)

Ventilace

Vhodná ventilace nám vhání do haly velké množství kvalitního, čerstvého vzduchu a odstraňuje nadbytečný čpavek, vlhkost, prach a oxid uhličitý. Ventilační systém by měl být variabilní na změnu vzduchu v hale. V letních měsících musí předejít vysokým teplotám z důvodu vysoké teploty v jádrovém prostředí a v zimních měsících musí udržovat teplotu tak, aby nedošlo k podchlazení kuřat (Kulovaná, 2002).

Typy ventilace:

Přirozená:
- ventilace, která využívá správného otevření postranních klapek, dveří či záclon
- při chladném počasí se klapky přivírají a při teplejším počasí se více otevírají
- intenzita proudění je závislá na rychlosti větrání
- využívané při teplotě podobné jako v hale a není mezičkoliká povinnost použít ochlazování chlazení či topení
- prokázaná nižší užitkovost než při využívání nucené ventilace (Aviagen, 2010)

Nucená:
- využití ventilátorů pro vhánění vzduchu do haly
- lepší kontrola, rychlost vháněného vzduchu než jen při přirozené ventilaci
- využití podtlaku či přetlaku (nejčastěji dochází k odsávání vzduchu z haly)
- dokonalé utěsnění hal (prostředí částečného vakua)
- minimální – ovládání pomocí časovače v chladném počasí (vháněn čerstvý vzduch k odstranění amoniaku a vlhkosti)
- přechodná – odvádění tepla pomocí termostatu
- tunelová – ovládání pomocí termostatu v teplejším počasí (ochlazování vzduchu pomocí vysokých rychlostí) (Aviagen, 2010)

3.4.2 Teplota vzduchu

Teplotu bychom měli udržovat na optimální hranici, protože čím je vyšší a čím déle je brojler vystaven vysokým teplotám, tím se zvyšuje jeho tepelný stres. Tepelný stres nastává v momentě, kdy je vysoká teplota spolu s dlouhodobou vlhkostí, a k ochlazování těla již nepomáhá ani zrychlené dýchání. Mezi příznaky tepelného stresu patří vzvýšená rektální teplota, rychlost metabolismu, tepová frekvence, pomalejší okysličování krve a v nejhorších případech k úhynu kuřat (Aviagen, 2009). Teplotní stres má významný vliv na rychlost růstu, kvalitu a složení masa. Vyvolávaný stres rychle snižuje pH v těle kuřat a maso je pak bledě barvy (Aksit et al., 2006). K úhynu dochází naopak i při velmi nízkých teplotách, kdy dojde k podchlazení kuřat (Výmola, 1995).
Tabulka 3: Teplota a vlhkost vzduchu

<table>
<thead>
<tr>
<th>dny</th>
<th>Teplota °C</th>
<th>Rozmezí relativní vlhkosti %</th>
<th>Teplota suchého teploměru při % relativní vlhkosti</th>
<th>Ideální</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>30,0</td>
<td>60-70</td>
<td>36,0</td>
<td>30,8</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>29,2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>27,0</td>
</tr>
<tr>
<td>3</td>
<td>28,0</td>
<td>60-70</td>
<td>33,7</td>
<td>28,9</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>27,2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>26,0</td>
</tr>
<tr>
<td>6</td>
<td>27,0</td>
<td>60-70</td>
<td>32,5</td>
<td>27,7</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>26,0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>24,0</td>
</tr>
<tr>
<td>9</td>
<td>26,0</td>
<td>60-70</td>
<td>31,3</td>
<td>26,7</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>25,0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>23,0</td>
</tr>
<tr>
<td>12</td>
<td>25,0</td>
<td>60-70</td>
<td>30,2</td>
<td>25,7</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>24,0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>23,0</td>
</tr>
<tr>
<td>15</td>
<td>24,0</td>
<td>60-70</td>
<td>29,0</td>
<td>24,8</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>23,0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>22,0</td>
</tr>
<tr>
<td>18</td>
<td>23,0</td>
<td>60-70</td>
<td>27,7</td>
<td>23,6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>21,9</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>21,0</td>
</tr>
<tr>
<td>21</td>
<td>22,0</td>
<td>60-70</td>
<td>26,9</td>
<td>22,7</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>21,3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>20,0</td>
</tr>
<tr>
<td>24</td>
<td>21,0</td>
<td>60-70</td>
<td>25,7</td>
<td>21,7</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>20,2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>19,0</td>
</tr>
<tr>
<td>27</td>
<td>20,0</td>
<td>60-70</td>
<td>24,8</td>
<td>20,7</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>19,3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>18,0</td>
</tr>
</tbody>
</table>

(zdroj: Aviagen, 2009)

3.4.3 Vlhkost

Při produkci brojlerů přechází větší část vody do prostředí, kterou je nutné odsát ventilací. Průměrné zkonzumované množství vody je u brojlera při hmotnosti 2,5 kg přibližně 7,5 kg vody z čehož do ovzduší vyprodukuje přibližně 5,7 kg vody. Při počtu 10 000 kusů brojlerů se jedná o 57 tun vody v prostředí ať už ve formě odpařené vlhkosti nebo v trusu (Aviagen, 2009).

3.4.4 Světelný režim

Světlo je velmi důležitým parametrem, který se musí hlídat. Chovatelé musí dodržovat barvu světla, intenzitu, střídání a délku denního osvětlení. V minulosti byl nepřetržitý režim světla velmi oblíben, avšak v této době bylo prokázáno, že i tma
může ovlivnit užitkovost, metabolismus a chování brojlera. V nejnovějších poznatcích bylo zjištěno, že tma dále ovlivňuje účinnost krmiva, výskyt náhlých smrtí, poruchy kostry a edémové choroby, zvyšuje se podíl stehenní svaloviny a změna nastává i v podílu břišního tuku.

Tabulka 4: Doporučené hodnoty – intenzita a délka dne

<table>
<thead>
<tr>
<th>živá hmotnost</th>
<th>stáří</th>
<th>intenzita (Lux)</th>
<th>délka dne (hod)</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 2,5 kg</td>
<td>0-7</td>
<td>30-40</td>
<td>23 světlo + 1 tma</td>
</tr>
<tr>
<td></td>
<td>8 až 3 dny před porážkou</td>
<td>5-10</td>
<td>20 světlo + 4 tma</td>
</tr>
<tr>
<td>> 2,5 kg</td>
<td>0-7</td>
<td>30-40</td>
<td>23 světlo + 1 tma</td>
</tr>
<tr>
<td></td>
<td>8 až 3 dny před porážkou</td>
<td>5-10</td>
<td>18 světlo + 6 tma</td>
</tr>
</tbody>
</table>

(zdroj: Aviagen, 2009)

3.4.5 Technika krmení

V prvních dnech života kuřete je krmení připravováno do plochých krmítek nebo na papír, který se po pár dnech rozpadne či oddělá. Kuřata zpočátku nevidí, a proto musí slyšet zvuk krmení chozením po papíru.

V dalších dnech je krmení dopravováno do krmítek, kde je, pomocí automatizovaného systému, nepřetržitě k dispozici. Krmítka jsou zavěšena na kovové trubce či řetízku, který s narůstajícím věkem kuřat zkracujeme. Zpočátku
je výška nastavena tak, aby se zvířata nemusela nahýbat přes okraj, později se délka přizpůsobí výšce jejich hřbetu.

3.5 Složení krmiva

Krmivo se skládá z vody a sušiny. Sušina pak z minerálních látek (makroprvky, mikroprvky a stopové prvky) a z organických látek (dusíkaté látky (bílkoviny), tuk, sacharidy a další účinné látky) (Prombergerová, 2013).

3.5.1 Voda

Voda drůbež ochlazuje, slouží jako přenašeč živin a pomáhá ke stavbě buněk. Drůbež přijímá jednak vodu z napáječek a dále pak také prostřednictvím krmiva.

3.5.2 Sušina

Vláknina

Bílkoviny
Bílkoviny jsou složené z aminokyselin dělených na esenciální (nepostradatelné) a neesenciální (postradatelné). Esenciální aminokyseliny musí organismus přijmout z krmné dávky, protože si je neumí sám vyrobit (Prombergerová, 2013).

Sacharidy
Sacharidy jsou pro tělo vhodný zdroj rychlé energie, který drůbež získává ze škrobů, vlákniny, cukrů a organických kyselin. Zdrojem sacharidů jsou obilníny,
otruby, okopaniny a krmné mouky. Při přebytku sacharidů dochází k tučnění těl drůbeže, protože se z nich stávají zásobní látky. Strávení sacharidů doprovází vytvářená energie (ME) v kJ nebo MJ (Prombergerová, 2013).

Tuky

Minerální látky

Minerální látky rozdělujeme na makrominerální a mikrominerální látky.

Tabulka 5: Přehled minerálních látek

<table>
<thead>
<tr>
<th>látky</th>
<th>prvky</th>
</tr>
</thead>
<tbody>
<tr>
<td>Makrominerální látky</td>
<td>C, H, N, O, P, K, Ca, Cl, Mg, Na, Fe, S</td>
</tr>
<tr>
<td>Mikrominerální látky</td>
<td>Zn, Mn, Cu, Mo, B, F, Br, Se, As, Si, Li, Al, Ti, V</td>
</tr>
</tbody>
</table>

(zdroj: vlastní zpracování)

Minerální látky se podílí na řadu procesů probíhajících v těle, zejména však aktivují enzymy, tvoří kosti a jsou nepostradatelné pro přesun živin v buněčné stěně. Nejdůležitější ve výkrmu drůbeže je z makrominerálních látek obsah draslíku, vápníku, fosforu a sodíku. Zastoupení vápníku a fosforu je důležito správným poměrem
Mikrominerální látky jsou pro tělo také důležité, ale nepřikládá se jim takový význam jako látkám makrominerálním. I skladba mikroprvků musí být v určitém poměru, aby se navzájem ovlivňovaly (Prombergerová, 2013).

Uvolněná měď podporuje vstřebávání železa, stavbu kostí a barvu peří. Jeho obsah musí být v normě, jelikož při nadbytku způsobuje zesílení stěny žaludku a tím pádem erozi sliznice u brojlerových kuřat (Wikipedie, 2016).

Vitamíny

Krmná dávka u drůbeže je složena z řadu vitaminů – A, D, E, K₃, komplex vitaminu B, C, biotin, kyselina listová a cholin. Vitamíny liposolubilní neboli rozpustné v tucích se zvířatům ukládají v játrech, tudíž je můžeme neustále podávat a zvířata si je uloží v těle. Skupiny vitaminů B se neukládají v těle do zásoby a s výjimkou cholinu plní funkci koenzymů.

Vitamín A podporuje reprodukci a zdraví všech epitelů v těle například pokud se dostatečně nevytvoří epitel řasinek v nose, dochází k respiračním onemocněním či k průjmu u drůbeže. Princip přidávání vitaminů je takový, že se k vitamínu přidá
aditivum proti oxidaci, barvivo, cukr a želatina. Vitamin A rozpustíme v oleji a spolu s želatinou vytvoříme suspenzi, z které v rozprašovacím zařízení vznikne mlhovina a do ní rozfoukáme částečky škrobu. Tím nám vznikne obdukováný vitamin A, který přimícháváme do premixů. 1 gram vitaminů A je 3 mil. m. j. (Zelenka, 2014).

Z vitaminů D je pro drůbež nutný vitamin D3, protože vitamin D2 je pro ně účinný jen z 3 %. Při předávkování může dojít k toxicitě, ovlivnění činnosti ledvin a cév. Nakládat s tímto vitamínem mohou jen certifikované výrobci.

Vitamin E chrání organismus zvířat před volnými radikály a má velký vliv na trvanlivost masa. V případě, že zvíře bude trpět nedostatkem vitaminu E, zkrátí se doba skladování masa.

Vitamin K je v těle drůbeže důležitý pro srážení krve. V případě, že zvířatům budeme podávat antibiotika či antikokcidika, je vhodné zvýšit dávku tohoto vitamínu, protože tyto dvě skupiny aditiv snižují funkci mikroorganismů v trávicím traktu, které vytváří tento vitamín.

Jako další se v krmných dávkách drůbeže přidává komplex vitaminů B–B1, B2, B6, B12, niacin (vit. B3), kyselina pantotenová (vit. B5), biotin (vit. B7), kyselina listová (B9) a cholin.

Vitamin C není pro většinu zvířat vitamínem, jelikož si jej dokáží vytvořit v těle samy. Přidává se zejména při stresových situacích (Zelenka, 2016).

3.6 Komponenty krmných směsí

3.6.1 Obiloviny

Pšenice

Pšenice patří mezi nejpoužívanější obilniny v našich podmínkách. V krmných dávkách nám přispívá k většímu množství energie a dusíkatých látek. U pšenice je nutný vlastní rozbor obsahu dusíkatých látek, jelikož jejich množství je velice proměnlivé. Pohybuje se od 9-17 %.

Doporučená dávka v krmné dávce u drůbeže se pohybuje od 20–25 %, u čerstvého zrna a při doplnění enzymů až 50 %. Ve vyšších dávkách se mohou
v kloakách tvoří nálepy a tím vznikají potíže s velmi vlhkou podestýlkou. Z hlediska lepší stravitelnosti, s čímž souvisí následná užitkovost, je lepší zkrmovat pšenici dozrálo po sklízni. Ve výkrmu drůbeže se nejčastěji používá v kombinaci s kukuřicí. Pšenice obsahuje větší množství fytázy a proto dochází k lepšímu využití živin vázaných ve fytátech (Vyskočil, 2008).

Kukuřice

Kukuřice patří mezi krmivo, které má vysokou stravitelnost a energetickou hodnotu. Při srovnání s pšenicí má vyšší obsah tuku a menší obsah NL. Semeno kukuřice obsahující karotenoidy přispívá k vybarvení vaječných žloutků ve výkrmu nosnic. Přijatelná vlhkost je 15 % a měrná hmotnost 670 kg/m3

Rizikovým faktorem při zkrmování může obsah mykotoxinů a plísní, který by měl být neustále sledován. Obsah kvalitní kukuřice v krmných směsi pro drůbež je 60–80 % (Vyskočil, 2008).

Ječmen

Obsah ječmene v krmných dávkách drůbeže se pohybuje minimálně, protože má větší množství neškrobových sacharidů (β-D glukany, pentosany), které mají vliv na viskozitu tráveniny.

Tritikále

Kříženec pšenice a žita je druh tritikále, kde tato odrůda vyniká vysokou výnosností a odolností k horším podmínkám pěstování. Tento kříženec může být využíván jako ekonomicky velmi výhodná náhrada za pšenici, pokud je jeho cena nižší než u pšenice. Využívání tritikále je v naších podmínkách omezené, pohybuje se do 20 % (Vyskočil, 2008).

Pšeničné otruby

Otruby vznikají jako postranní produkt při výrobě jedlé a krmné mouky. Tvoří je klíčky, semenné obaly a slupky. Otruby mají vyšší obsah minerálních a dusíkatých
látek. Významné je i zastoupení fosforu, které je velmi vysoké a proto bychom měli při sestavování krmných dávek dávat pozor na jeho obsah (Šilhánková, 2015).

Použití otrub je do 5 %, jinak při vyšších dávkách může způsobovat vlhkost podestýlky (Zelenka, 2014).

Krmné výpalky

Dalším způsobem jak obohatit krmnou dávku jsou vedlejší Produkty při výrobě potravin. Vhodným krmnením, které poskytuje živiny a energii, jsou sušené obilné výpalky s rozpustným podílem v malém množství. Výpalky se mohou použít i z rýže, pšenice, čirotku a kukuřice. Výpalky z kukuřice jsou však nejlépe volbou pro krmení nosnic, brojlerů, kachen a krůt, protože patří mezi levný zdroj, který obsahuje hrubý protein, hrubou vlákninu, mastné kyseliny a dostatek fosforu. Ze sledování drůbeže, které jsou krmeny tímto krmivem, vyplývá, že mají vyšší příjem krmiva, vyšší přirásky, hmotnost a lepší kvalitu masa. Dodávaný fosfor při vylučování přispívá k zlepšení prostředí před znečištěním a také jej nemusíme tolik v krmné dávce podávat, tj. zmenšují se náklady na krmivo. Lihovarské výpalky se u brojlerů zařazují v krmné dávce u startérových směsi do 6 %, a u krmiv v růstovém a závěrečném období do 12–15 % (Slavík, 2016).

3.6.2 Luštěniny

Sója

Sója patří mezi hlavní zdroj bílkovin a oleje díky vyššímu obsahu tuku (až 20 %). Dále obsahuje vysoký podíl dusíkatých látek (35-40 %) a esencíálních aminokyselin. Sójové bobky se po sklizni naparí a společně s extruzií, toustováním a mikronisací vzniká krmivo. Hydrotermicky upravená sója se využívá v krmných dávkách všech druhů zvířat, protože zvyšuje chutnost, obsah energie a dusíkatých látek (Vyskočil, 2008). Termickou úpravou se zničí inhibitory růstu. Sója se nejprve naparí párou v kondicionéru a poté se v extrudéru stlačí ve šnekovnici za působení vysoké teploty (110–140°C) a tlaku. Po protlačení se naruší běžná stěna sóje a musí dojít k následnému zchlazení. Po termické úpravě se pokračuje ve vlhké či suché expandidaci, v naparování spolu s vločkováním,
v mikronizaci či pufové. Ve strartérové směsi má takto upravená sója zastoupení přibližně 15 % pro kuřata a ve finišerových směsích 20 % pro nosnice.

Sója se nejčastěji používá ve formě extrudovaného či extrahovaného šrotu, který má vysoký obsah dusíkatých látek (44-49 %) s limitujícím množstvím methioninu (Zelenka, 2015). Sójové bobry se při této úpravě zbaví slabého dusíkaté látky, po šrotu zůstane a odstranou se tuk. Při zkrMOVÁNÍ si musíme dát pozor na obsah dusíkatých látek, vlákniny a metioninu (sirých aminokyselin). Dle toho dávkujeme množství šrotu (Vyskočil, 2008).

Hrách

Hrách patří též mezi hlavní zdroj dusíkatých látek v průměru 20–22 % (peluška nad 22 %). Nejčastěji bývá jako náhrada za sój u a dalších bílkovinných složek (Vyskočil, 2008).

Nahrazení sójového extrahovaného šrotu za hráč je hlavně z ekonomického hlediska (Zelenka, 2015).

Hráč se vyznačuje velkým obsahem cukru, škrobu a nízkým obsahem metioninu, tryptofanu a cysteinu. Zařazení do krmných směsí u drůbeže je v rozmezí od 5–10 % u brojlerů a nosnic (Vyskočil, 2008).

Lupina

Nejčastější odrůdou lupiny je lupina sladká (žlutá), která má největší obsah proteinu, ale na druhou stranu pohyblivý obsah tuku a vysoký obsah vlákniny. Vláknina u neloupané lupiny je docela vysoká od 12–15 %. V lupíně se fosfor váže na sůl kyseliny fytové a takto vázaný fosfor je pro drůbež špatně stravitelný, proto je vhodné dodávat mikrobiální týkatu, která ho umožní lépe využít.

Obsah neloupané lupiny v krmných směsích je pro brojly, kuřice a nosnice maximálně 10 % (Vyskočil, 2008).
3.6.3 Olejniny

Řepka

Řepkové semeno obsahuje z větší části obsah tuku (38-44 %) a z menší části obsah dusíkatých látek (20-25 %). Obsah je dále tvořen nižším obsahem bílkovin ve srovnání se sójou, 7-12 % vlákniny a přibližně 5 % minerálních látek.

Z důvodu vyššího obsahu antinutričních látek docházelo ke šlechtění řepky, aby se snížil jejich obsah např. obsah glykosinolátů se snížil na 10-25 µmol/g z 100-150 µmol/g. Vysoký obsah glykosinolátů snižoval chutnost krmiva, které vyvolávalo pocit hořkosti a pálivosti. Z krmiva tato chuť přecházela do mléka, vajec a masa. Vedle snížení chutnosti docházelo i k onemocnění jater, ke kterému je drůbež nejvíce náchylná, proto se přidávalo do krmných směsí jen do 4 µmol GSL/g.

Řepka se po úpravě zkrmuje jako řepkový extrahovaný šrot (Vyskočil, 2008).

Slunečnice

Slunečnice je pro výkrm drůbeže významná pro svůj obsah tuku, kyselin linolové a vitamínu E. Obsah tuku je 30 - 45 %, dusíkatých látek 16–20 % a až 70 % kyseliny linolové. Podíl dusíkatých látek je poměrně vysoký, protože jde o 180 g v 1 kg sušiny, s čímž bychom měli počítat při sestavování krmné dávky. Mezi další obsažené kyseliny ve slunečnici patří kyselina palmitová, stearová a olejová.

Semeno slunečnice se běžně používá pro ptactvo celé, ale v případě kuřat není vhodné. A proto se ve výkrmu drůbeže používá slunečnicový extrahovaný šrot z loupaných semen do 5-10 % (Vyskočil, 2008).

3.6.4 Rostlinné oleje

Oleje jsou nezastupitelnou složkou obsahující nejvíce koncentrované energie ve svém složením. Pro výkrm drůbeže se nejčastěji používá sójový, řepkový, lněný a slunečnicový olej (rozhodující je nákupní cena).

Sójový olej má vhodný poměr esenciálních mastných kyselin, které přiznivě působí na oběhový systém a kůži. Velkou výhodou je i nízký obsah cholesterolu, vysoký obsah kyseliny linolové a vitamínů. V počáteční fázi výkrmu se spolu
s dalším olejem zařazuje v dávce do 1-2 %, v dalších fázích se jeho obsah navýšuje na 5-8 %.

Řepkový olej neobsahuje antinutriční látky – glykosinuláty, což je příznivé z hlediska chutnosti a zdraví zvířat. Obsah metabolizované energie pro drůbež je v rozmezí 35-36 MJ/kg, proto je považován za vitaný zdroj koncentrované energie. Stejně jako olej sójový obsahuje tento olej významný zdroj kyselin linolové až 220 g/kg. Dávkování oleje je shodné se sójovým olejem (Vyskočil, 2008).

3.6.5 Sušená krev

Sušená krev je vyrobena z čerstvé a zdravotně nezázadné krve z jatek, kde se usuší spolu s použitím vhodných stabilizátorů a konzervačních látek. Takto upravená krev patří mezi krmivo s vysokým obsahem dusíkatých látek (85%) a lysinu. Správně sušená krev má tmavou barvu, konzistenci sypkého prášku s vůní typickou pro sušenou krev.

Použití v krmných dávkách, v případě monogastrů, je do 5 % u starších kuřat (Vyskočil, 2008).

3.6.6 Grit

Za zdroj vápníku se přidává mletý vápenec nebo mušlový grit. Grit můžeme podávat drůbeži v různém zrnění a ve formě rozpustné či nerozpustné.

Nerozpustný grit (například drobné křemínky z písku nebo drcené žuly) se pozvolna obrušují v žaludku a proto jej lze podávat například jen 1x týdně.

Mezi rozpustný grit patří mušlový grit, drcená směs lastur, a jako nejvhodnější se doporučuje ústřicový, který lépe uvolňuje vápník. Podávání gritu není z důvodu rozmělnění potravy, ale spíše z důvodu rozmělnění sežraných tvrdých zbytků podestýlky a peří. Při výkrmu brojlerů do 3 týdnů věku, podáváme grit nerozpustný. Musíme si však dát pozor na to, že grit zvyšuje hmotnost brojlerů o 0,3 % a tudíž se před porážkou v posledních týdnech vynechává. Došlo by ke snížení jateční výtěžnosti a k opotřebení frézy na jatkách (Zelenka, 2014).
3.6.7 Monokalcium fosfát

Monokalcium – fosfát je odfluorovaný fosfát používaný pro přikrmování hospodářských zvířat, zejména drůbeže k prevencí chorob z důvodu nedostatku fosforu a vápníku. Jeho podávání zajišťuje dostatečně silný imunitní a reprodukční systém (Fink, 2013).

3.6.8 Krmná sůl

3.6.9 Krmná aditiva

Vitamíny

Vitamíny jsou do krmné dávky přidávány z důvodu nedostatečného množství vitamínů z krmiva, nebo z důvodu, že si tělo nemůže vitamín samo obstarat. Obsah vitamínů je udáván v mezinárodních jednotkách (m. j.), protože některé mají jinou účinnost, nebo jsou v mg/kg. Výpočet obsahu vitamínů je dán složením krmné dávky, pokud budeme mít například směs s vyšším obsahem pšenice, musíme přidat více vitamínu A, B₆ a biotinu. Dále je obsah vitamínů ovlivněn typem úpravy krmiv, jejich skladováním, stresovým faktorem aj (Zelenka, 2014).

Minerální látky

Podávání je formou minerálních sloučenin nebo komplexech iontů a kovů s organickými látkami (aminokyseliny, peptidy, bílkoviny, polysacharidy, EDTA, cheláty,…) (Zelenka, 2016).
Aminokyseliny

Antioxidanty

Enzýmy

Přidávání enzymů do směsi umožňuje drůbeži lépe stravit neškrobové polysacharidy, které se vyskytují například v pšenici či ječmenu. Tyto polysacharidy jsou částečně rozpustné ve vodě a způsobují vznik viskozních gelů v trávicím traktu. Při výskytu viskozních gelů dochází k narušení funkce trávicích enzymů a tím pádem je krmivo pro drůbež hůře stravitelné, využitelné a vylučuje se lepivý trus.

V případě podávání enzymů bylo zjištěno, že se nevytváří takové množství viskozního gelu, zlepšila se konverze, stravitelnost, přírůstky a celkový stav.

Ve výživě drůbeže se používá pytáz, xylanáza, β-glukanáza a další. Volba enzymu je dána složením krmné dávky a kategorii drůbeže (Michňová, 2014).

Antikokcidika

S rostoucí výrobou drůbežího masa roste i počet Eimeria infekcí, které způsobují kokcidiózu, proto je nutné dodávat do směsí toto aditivum (Biggs, 1982). Do krmných směsí se zařazují antikokcidika, které zamezují rozmnožování a bojují proti kokcidiím. Kokcide jsou paraziti, kteří pronikají do střevních stěn drůbeže a narušují je. Antikokcidiaka se nachází v krmných směsích BR1 a v BR2.

V poslední fázi výkrmu se směsí BR3, přibližně týden před porážkou, jsou antikokcidiaka vynechaná z důvodu obsahu možných reziduí v mase. Systém podávání těchto látek je založen na rotaci více antikokcidiák, aby nedošlo k rezistenci kokcidií. Kuřata nakažená kokcidiózou pospávají se svěšenými křídly, nepřijímaní
potravu, mají větší spotřebu vody a postupně může dojít k úhynu v křečích (Melxner, 2001).

Další krmná aditiva

Probiotika

Prebiotika

Prebiotika mají podobnou funkci jako probiotika – ovlivňují skladbu mikroorganismů v těle a mohou složit jako zdroj energie pro řadu z nich. Zkrmování prebiotik je od 0,1–0,5 % (Zelenka, 2014).
3.6.10 Premixy a doplňková minerální krmiva

Na trhu jsou nabízeny různé směsi krmných aditiv, které se smíchají spolu s krmnými surovinami, a tím vznikne krmná směs pro drůbež.

Registrovaní a schválení výrobců krmných směsí, nebo zemědělší podnikatelé užívající krmivo pro vlastní potřebu, používají premixy od certifikovaných výrobčů premixů. Pro pouze zaregistrované zemědělce či chovatele, jsou k dispozici doplňková minerální krmiva pro vlastní míchání směsí. Dávkování je vždy v předepsaném procentu (Joch, 2016).

3.7 Úprava krmiv

- šrotování – úprava jadrných krmiv šrotováním s velikostí síta 3–4,7 mm
- drcení
- michání – při chystání směsných krmných dávek v míchárnách
- granulace – způsob úpravy krmiva na granule o velikosti 2-4 mm nám zajišťuje příjem všech komponentů, zvyšuje konverzi, celkový příjem, konzervaci, chutnost aj. (Blažková a kol., 2008)

3.8 Kompletní krmné směsi BR1, BR2, BR3

Kuře je krmeno ve třech fázi a každá z nich má jinak složenou kompletní krmnou směs.

Tabulka 6: Směsi pro různé fáze výkrmu

<table>
<thead>
<tr>
<th>směs</th>
<th>fáze</th>
</tr>
</thead>
<tbody>
<tr>
<td>BR1</td>
<td>startérová směs (1-11 den)</td>
</tr>
<tr>
<td>BR2</td>
<td>použití ve druhé fázi (11-30 den)</td>
</tr>
<tr>
<td>BR3</td>
<td>použití v poslední fázi výkrmu, neobsahuje kokcidiostatika*</td>
</tr>
</tbody>
</table>

(zdroj: vlastní zpracování)

*látky, které působí proti kokcidióze přenosné z jednoho ptáka na druhého pomocí trusu, v poslední fázi před porážkou se vynechávají (Zedník, 2009)
3.9 Právní předpisy v chovu drůbeže

Oblast veterinární péče a péče o pohodu zvířat

Zákon č. 166/1999 Sb., o veterinární péči, ve znění pozdějších předpisů
Zákon č. 246/1992 Sb., na ochranu zvířat proti týrání, ve znění pozdějších předpisů
Vyhláška č. 208/2004 Sb., Ministerstva zemědělství, o minimálních standardech pro ochranu hospodářských zvířat, ve znění pozdějších předpisů.
Vyhláška č. 382/2004 Sb., o ochraně hospodářských zvířat při porážení, utrácení nebo jiném usmrcování.
Vyhláška č. 288/2008 Sb., Ministerstva zemědělství, kterou se mění vyhláška č.299/2003 Sb., o opatřeních pro předcházení a zdolávání nákaz nemocí přenosných ze zvířat na člověka
Vyhláška č.4/2009 Sb., o ochraně zvířat při přepravě
Vyhláška č. 72/2013 Sb., kterou se mění vyhláška č. 299/2003 Sb., o opatřeních pro předcházení a zdolávání nákaz a nemocí přenosných ze zvířat na člověka, ve znění pozdějších předpisů.
Vyhláška č. 291/212 Sb., kterou se mění vyhláška č. 94/2010 Sb., o některých veterinárních a hygienických požadavcích na přepravu a zpracování vedlejších živočišných produktů.
Vyhláška č. 82/ 2014 Sb., o kadáverech zvířat v zájmovém chovu.
Vyhláška č. 108/2013 Sb., kterou se mění vyhláška č. 376/2003 Sb., o veterinárních kontrolách dovozu a tranzitu produktů ze třetích zemí.
Věstník MZe, ročník 2013, částka 3, vydán 1. 12. 2013 – Metodika kontroly zdraví zvířat a nařízené vakcinace na rok 2014
Směrnice Rady č. 74/1999/ES, stanovující minimální standardy pro ochranu nosnic, které jsou platné od 1. 1. 2012
Směrnice Komise č. 4/2002/ES o registraci zařízení pro chov nosnic, kterou stanoví směrnice Radyč.74/1999/ES
Oblast šlechtění, evidence a označování zvířat
Zákon č. 154/2000 Sb., plemenářský zákon, o šlechtění, plemenitbě a evidenci hospodářských zvířat, ve znění pozdějších předpisů.
Vyhláška č. 448/2006 Sb., ministerstva zemědělství, o provedení některých ustanovení plemenářského zákona, ve znění pozdějších předpisů.
Vyhláška č. 136/2004 Sb., Ministerstva zemědělství, kterou se stanoví podrobnosti označování zvířat a jejich evidence a evidence hospodářství a osob stanovených plemenářským zákonem, ve znění pozdějších předpisů.
Vyhláška č. 447/2006 Sb., Ministerstva zemědělství, o genetických zdrojích zvířat (účinnost od 1. 10. 2006)

Oblast potravinářství
Zákon č. 110/1997 Sb., o potravinách a tabákových výrobcích ve znění pozdějších předpisů
Zákon č. 224/2008 Sb., úplné znění zákona č. 110/1997 Sb., o potravinách a tabákových výrobcích a o změně některých souvisejících zákonů, ve znění pozdějších předpisů
Nařízení vlády č. 125/2011 Sb., o stanovení informačních povinností příjemců živočišných produktů v místě určen (Roubalová, 2014)

3.10 Zoohygiena chovu

Úspěšnost chovu závisí vedle dodávání kvalitního krmení, dodržení ustájovacích podmínek, také na vytvoření optimálních podmínek z hlediska zdraví drůbeže. Mezi hlavní zásady patří chov stejně starých zvířat. To platí zejména u kuřat, protože pokud by chovatel choval různě stará kuřata, mohlo by dojít k jejich nákaze od starších kusů. Přirozeně kuřata získávají od matky mateřské protilátky, které jsou v těle účinné pouze 14 dnů. Po této době ztrácí kuře obranyschopnost a je náchynější k onemocnění.

Předtím než se naskladní turnus by mělo dojít k následujícím činnostem:

- desinfekce (včetně napájecího a krmeného systému)
- ihned po vyskladnění provedeme postřik napájecích, krmných systémů a podestýlky disinfekcí, abychom zničili hmyz a přenašeče možné nákazy
- mezi disinfekční prostředky patří preparáty, které mají různou míru ředění a nejsou toxické pro zvířata a lidi (biologický charakter)

likvidace staré podestýlky
- před odstraněním staré podestýlky provedeme postřik celé haly včetně stropů, abychom zamezili šíření prachu
- dále musí dojít k vystěhování krmného a napájecího zařízení
- z haly odstraníme pomocí nakládacího zařízení starou podestýlku včetně nečistot (nečistoty z ventilace, lišť, trámů, říms a pavučiny)
- uložení staré podestýlky by mělo dojít minimálně 1500 m od haly a poté ji rozměst na poli či jinak využít

mytí
- mytí haly probíhá tlakovým zařízením s detergentem
- mezi místa, která se očistí, patří ventilace, trámy, lišty, vodovodní potrubí, větrací šachty a celkově celý prostor haly musí být čistý bez známek nečistot

desinfekce krmného a napájecího zařízení
- u krmného systému provedeme desinfekci celého zařízení (řetězů a závěsných krmitek), vyprázdníme a vyčistíme zásobníky s předešlým krmením
- u napájecího systému vyčistíme nádrže a potrubí pomocí roztoku hypochloridu sodného, který necháme 24 hodin působit, poté provedeme proplach čistou vodou

opravy a údržba
- v této fázi je vhodné provést veškeré úpravy haly – zapravení trhlin v betonové podlaže, opravy stěn, vybílení a provedení nátěrů
• desinfekce
 - celkové zničení původů nákaz (viry, bakterie, plísně, houby)
 - po aplikaci desinfekce bychom měli nechat halu alespoň 10 dní prázdnou

• plynová desinfekce (fumigace)
 - prováděno nejméně dvěma pracovníky, kteří znají bezpečnost práce při fumigaci
 - po skončení plynové desinfekce nevstupujeme do objektu 24 hodin
 - po této době proběhne vyvětrání celé haly

• rozprostření nové podestýlky, další fumigace a větrání haly po její aplikaci

• příprava haly na nové kusy
 - doba od fumigace haly s podestýlkkou by měla být nejméně 72 hodin
 - před naskladněním by měly být prostory vyhřáté a suché
 - vytápění probíhá obvykle 2–3 dny před novým zástavem, v zimním období i dříve
 - před naskladněním provést rychlou kontrolu malých kuřat a rychle je naskladnit
 - přemístěování kuřat musí provádět osoby k tomu určené, oblečené v předepsaném oděvu a obuvi (Výmola, 1995)
3.11 Princip fungování nášlapných vah

Váhy jsou umístěny přímo na hale, kde na ně stoupají kuřata a v krátké době je váha schopna zaregistrovat hmotnost kuřete. Interval přípisování nových dat je 1x za 24 hodin. Vlhkost a teplota jsou měřeny pomocí umístěného teploměru s vlhkoměrem. Do systému je možné zadávat typ hybridu, dodavatele krmiv a z jakého rozmnožovacího chovu kuřata pocházejí.

Obr 3 a 4: nášlapná váha na hale, úvodní stránka programu (zdroj: vlastní)
4 MATERIÁL A METODIKA

Cílem praktické části diplomové práce bylo vyhodnotit přírůstky brojlerů na nášlapných vahách, hodnoty teplot, vlhkosti a uniformity.

5 VÝSLEDKY A DISKUZE

5.1 Typy hybridů

Zastoupení hybridů v jednotlivých obdobích

Porovnali jsme, jaký typ brojlera je zastoupen více podle jejich naskladněného množství. V letním období byli chováni oba dva typy průměrově stejně, v přechodném a zimním období více COBB 500.

Průměrné zastoupení hybridů v jednotlivých časových obdobích

Graf 2 Zastoupení jednotlivých typů brojlerů

Graf 3 Průměrné zastoupení hybridů v jednotlivých časových obdobích
5.2 Hmotnost v 1. dnu

Tabulka 7: Hmotnost jednodenních kuřat

<table>
<thead>
<tr>
<th>turnus</th>
<th>hybrid</th>
<th>hmotnost jednodenního kuřete</th>
</tr>
</thead>
<tbody>
<tr>
<td>9/2014</td>
<td>ROSS 308</td>
<td>54 g</td>
</tr>
<tr>
<td>11/2014</td>
<td>ROSS 308</td>
<td>54 g</td>
</tr>
<tr>
<td>1/2015</td>
<td>COBB 500</td>
<td>53 g</td>
</tr>
<tr>
<td>3/2015</td>
<td>COBB 500</td>
<td>54 g</td>
</tr>
<tr>
<td>4/2015</td>
<td>ROSS 308</td>
<td>52 g</td>
</tr>
<tr>
<td>6/2015</td>
<td>ROSS 308</td>
<td>51 g</td>
</tr>
<tr>
<td>8/2015</td>
<td>COBB 500</td>
<td>52 g</td>
</tr>
<tr>
<td>10/2015</td>
<td>ROSS 308</td>
<td>53 g</td>
</tr>
<tr>
<td>12/2015</td>
<td>COBB 500</td>
<td>53 g</td>
</tr>
<tr>
<td>01/2016</td>
<td>COBB 500</td>
<td>54 g</td>
</tr>
</tbody>
</table>

5.3 Počet kusů na m²

Velikost haly je 911 m² a z dat o počtech kuřat jsme vypočítali maximální počet kusů na m² při naskladnění. Sekaninová (2015) uvádí, že maximální zatížení na plochu by mělo být 33 kg/m² a v případech, kde je větší osazení, dochází ke kontrolám na amoniak, oxid uhličitý, teplotu a vlhkost. V našem případě je počet kusů vypočten v počáteční fázi výkrmu, a jelikož jsou zde každý den úhyny a brakace, tak na vybrané farmě chovají brojlery do maximálního zatížení. Dále ještě
dochází k vyskladnění zhruba 1 000 ks pár dní před vyskladněním celé haly. Takže v konečné fázi výkrmu zde není tolik kusů kuřat najednou. Probíhají zde tzv. drůbeží trhy, kde si spotřebitelé mohou koupit vykmeněho brojlera.

Tabulka 8: Počet kuřat na m²

<table>
<thead>
<tr>
<th>turnus</th>
<th>počet kuřat</th>
<th>± zatížení ks/ m²</th>
</tr>
</thead>
<tbody>
<tr>
<td>9/2014</td>
<td>18 720</td>
<td>21</td>
</tr>
<tr>
<td>11/2014</td>
<td>18 900</td>
<td>21</td>
</tr>
<tr>
<td>1/2015</td>
<td>18 348</td>
<td>20</td>
</tr>
<tr>
<td>3/2015</td>
<td>19 890</td>
<td>22</td>
</tr>
<tr>
<td>4/2015</td>
<td>21 000</td>
<td>23</td>
</tr>
<tr>
<td>6/2015</td>
<td>20 610</td>
<td>23</td>
</tr>
<tr>
<td>8/2015</td>
<td>20 700</td>
<td>23</td>
</tr>
<tr>
<td>10/2015</td>
<td>20 790</td>
<td>23</td>
</tr>
<tr>
<td>12/2015</td>
<td>20 800</td>
<td>23</td>
</tr>
<tr>
<td>01/2016</td>
<td>20 047</td>
<td>22</td>
</tr>
</tbody>
</table>

Výsledný počet kuřat se pohybuje od 20 – 23 ks na m² což vypovídá o značné vyrovnanosti počtu naskladněných kuřat. Dle (Doktorové, 2007) nedochází při takovém obsazení prostoru o velikosti 1 m² k poklesu růstu ale k poklesu využití krmiva. Podle příručky Aviagen má 21,5 kusů kuřat na m² průměrnou hmotnost 1,36 kg a hmotnost všech brojlerů je 29,2 kg tudíž nedochází k přetížení maximální plochy.

5.4 Hmotnost

Porovnání průměrné hmotnosti s teoretickou hmotností křivkou

Denně zaznamenávané hmotnosti kuřat lze porovnat s průměrnou hmotností křivkou, která je pro oba typy brojlerů stejná. U brojlera typu Ross 308 lze vidět, že v roce 2014 byly váhy kuřat od 2. fáze nad křivkou. Další rok tomu však bylo naopak. Nejlepší přírůstky kuřat byly v turnusu 4/14, kdy jejich váha byla 2 358 g v 40. dnu života. Naopak v turnusu
10/15 byla váha kuřat ve stejném věku 2 066 g. Firma Xavergen uvádí, že hybrid ROSS by měl mít ve 40. dnu 2472 g. Vyhodnocený nejlepší turnus ve srovnání s touto teoretickou hodnotou byl lehce pod křivkou.

U brojlera typu Cobb 500 lze na základ grafu říci, že se turnusy více pohybují okolo teoretické křivky. V turnuse 3/15 byla porážková hmotnost brojlerů v 38. dnu života 2 299 g oproti turnusu 8/15, kdy ve stejném věku dosahovala hmotnost pouze 1 980 g. Firma Xavergen (2007) uvádí v růstové křivce hybrida hmotnost 2 184 g. Při srovnání našich vyhodnocených hodnot se nejlepší turnus pohyboval přes 100 g nad křívkou a v letečním turnuse 8/15 až 200 g pod křívkou.

Graf 4 Porovnání průměrných hmotností s teoretickou hmotností Ross 308

Graf 5 Porovnání průměrných hmotností s teoretickou hmotností Cobb 500
Porovnání přírůstků v letním a zimním období

U Cobbu je za letní období považován turnus 3/15 a 8/15, a za zimní období turnusy 1/15, 12/15 a 1/16. U tohoto typu lze vidět patrnou nevyrovnanost. Nejvyšší hmotnost měl k 36. dni 2 175 g v turnuse 3/15 a oproti tomu v turnuse 1/16 to bylo pouhých 1 845 g. Lze usuzovat, že lepší přírůstky v letních měsících bude mít tento typ brojlera, viz graf 7.

Graf 6 Porovnání hmotností v letních a zimních měsících ROSS 308

Graf 7 Porovnání hmotností v letních a zimních měsících COBB 500
5.5 Uniformita

Systém váhy je schopný počítat i uniformitu chovu. Ta nám ukazuje, kolik % kuřat se pohybuje v rozpětí od dané průměrné hmotnosti. Vyhodnocení proběhlo při rozdělení turnusů na letní, zimní a přechodné období.

Graf 8 Uniformita hybridů v letním období

V letním období dosahovala uniformita brojlera typu ROSS až 82 % v 10. dnu života a naopak v 35. dnu byla už jen 64 %. Celkově byl v tomto období více uniformní tento typ brojlera než COBB 500.

Graf 9 Uniformita hybridů v přechodném období
V přechodném období tomu však bylo naopak. Uniformita v 10. dnu života u hybrida ROSS 500 byla pouhých 50 %. U typu COBB došlo od 15. dne ke stabilizování uniformity a výsledky byly okolo 70 %.

V zimním období lze vidět, že se u obou typů brojlerů hodnoty výrazně nelišily. Nejnižší hodnota byla v 1. dnu života u ROSSE a nejvyšší hodnota byla v 15. dnu u COBBA (76 %). Podle Aviagen se kuřata v hejnech, kde je stálejší uniformita, dostávají lépe do konečné hmotnosti. Stálejší hodnoty uniformity vykazuje zimní období na této farmě.

Společná uniformita

Z grafu 11 můžeme vyčíst, že v letním období má lepší uniformitu hybrid ROSS 308, která dosahuje přes 80 %. Naproti tomu u hybrida COBB je situace jiná a to taková, že jeho maximální uniformita byla 74 %. V přechodném období se však hodnoty obrací a vyplývá nám, že je COBB 500 v tomto čase stálejší. V zimním období dochází k určité stabilizaci a k vyrovnanosti obou hybridů.
Pomocí korelačního koeficientu jsme zjistili vzájemný vztah mezi denním přírůstkem a počtem nášlapů na váhu. Čím se hodnota koeficientu blíží hodnotě -1, tím se vztahy dvou veličin ovlivňují. Ze všech dat nám výsledná hodnota korelačního koeficientu vyšla -0,071861381. Jedná se tedy o zcela nepřímou závislost, tudíž čím se zvyšuje hmotnost kuřat, tím se snižuje jejich frekvence naskakování na váhu. Při zjišťování korelačního koeficientu u celkové hmotnosti a počtem nášlapů nám vyšla hodnota -0,435026716, tudíž se jedná o větší závislost těchto dvou hodnot.

V tabulce 9 jsou vypočítané koeficienty pro jednotlivé fáze, aby bylo jasně vidět, jak se mění závislost přírůstků s počtem nášlapů na váhu. Kuřata jsou nejvíce aktivní v první polovině života. Později s přibývající hmotností nejsou tak aktivní jako při menší váze.

Tabulka 9: Korelační koeficienty v různých fázích

<table>
<thead>
<tr>
<th>fáze výkrmu</th>
<th>hodnota korelačního koeficientu</th>
</tr>
</thead>
<tbody>
<tr>
<td>do 15. dne života</td>
<td>0,354396889</td>
</tr>
<tr>
<td>od 15. dne do 30. dne</td>
<td>0,106336842</td>
</tr>
<tr>
<td>od 30. dne do konce výkrmu</td>
<td>-0,247211371</td>
</tr>
</tbody>
</table>
Tabulka 10: Průměrné množství kuřat na váze

<table>
<thead>
<tr>
<th>den chovu</th>
<th>průměrné množství kuřat na váze</th>
<th>den dochovu</th>
<th>průměrné množství kuřat na váze</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>383</td>
<td>22</td>
<td>1166</td>
</tr>
<tr>
<td>2</td>
<td>856</td>
<td>23</td>
<td>1135</td>
</tr>
<tr>
<td>3</td>
<td>1210</td>
<td>24</td>
<td>1198</td>
</tr>
<tr>
<td>4</td>
<td>1111</td>
<td>25</td>
<td>1192</td>
</tr>
<tr>
<td>5</td>
<td>1095</td>
<td>26</td>
<td>1212</td>
</tr>
<tr>
<td>6</td>
<td>1188</td>
<td>27</td>
<td>1009</td>
</tr>
<tr>
<td>7</td>
<td>1261</td>
<td>28</td>
<td>903</td>
</tr>
<tr>
<td>8</td>
<td>1272</td>
<td>29</td>
<td>8450</td>
</tr>
<tr>
<td>9</td>
<td>1297</td>
<td>30</td>
<td>821</td>
</tr>
<tr>
<td>10</td>
<td>1374</td>
<td>31</td>
<td>746</td>
</tr>
<tr>
<td>11</td>
<td>1379</td>
<td>32</td>
<td>643</td>
</tr>
<tr>
<td>12</td>
<td>1382</td>
<td>33</td>
<td>569</td>
</tr>
<tr>
<td>13</td>
<td>1407</td>
<td>34</td>
<td>529</td>
</tr>
<tr>
<td>14</td>
<td>1227</td>
<td>35</td>
<td>479</td>
</tr>
<tr>
<td>15</td>
<td>1208</td>
<td>36</td>
<td>471</td>
</tr>
<tr>
<td>16</td>
<td>931</td>
<td>37</td>
<td>389</td>
</tr>
<tr>
<td>17</td>
<td>1169</td>
<td>38</td>
<td>277</td>
</tr>
<tr>
<td>18</td>
<td>1337</td>
<td>39</td>
<td>163</td>
</tr>
<tr>
<td>19</td>
<td>1188</td>
<td>40</td>
<td>277</td>
</tr>
<tr>
<td>20</td>
<td>1122</td>
<td>41</td>
<td>232</td>
</tr>
<tr>
<td>21</td>
<td>1149</td>
<td>42</td>
<td>377</td>
</tr>
</tbody>
</table>
5.7 Teplota

Průměrná teplota

Přehled maximálních a minimálních venkovních teplot

Graf 14 Přehled maximálních a minimálních teplot uvnitř haly

Průměrná teplota a vlhkost

Z grafu 15 vyplývá, že s klesající teplotou a dobou výkrmu se zvyšuje vlhkost uvnitř haly. Nejvyšší dosažená průměrná vlhkost byla 38. den výkrmu, kdy její hodnota činila 71 %. V tabulce 2 v literárním přehledu jsou uvedeny rozmezí relativní vlhkosti od 60–70 % tudíž jsou vyhodnocené hodnoty v přijatelném rozmezí. Zelenka (2014) uvádí, že v počátku výkrmu by měla vlhkost být na úrovni 60–70 % a v další fázi by neměla překročit 70 %.
Optimální teplota a teplota na hale

V literárním přehledu v tabulce 2 jsou uvedeny optimální teploty v určitých dnech výkrmu. Z grafu 16 a tabulky 11 vyplývá, že se na vybrané farmě pohybují lehce nad touto křivkou. Nejvyšší dosažená teplota na hale byla v prvním dnu výkrmu 32,7 °C v srpnu 2015.

Tabulka 11: Optimální a reálné teploty ve vybraných dnech

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1 den</td>
<td>30</td>
<td>30,9</td>
<td>30,8</td>
<td>32,3</td>
<td>32,5</td>
<td>31,9</td>
<td>32,7</td>
<td>32,2</td>
<td>32,3</td>
</tr>
<tr>
<td>3</td>
<td>28</td>
<td>29,8</td>
<td>29,9</td>
<td>29,5</td>
<td>30</td>
<td>29,9</td>
<td>30</td>
<td>30,3</td>
<td>30,5</td>
</tr>
<tr>
<td>6</td>
<td>27</td>
<td>28,7</td>
<td>28,4</td>
<td>28</td>
<td>28,5</td>
<td>28,7</td>
<td>28,8</td>
<td>29,1</td>
<td>28,9</td>
</tr>
<tr>
<td>9</td>
<td>26</td>
<td>27,4</td>
<td>27,4</td>
<td>26,9</td>
<td>27,2</td>
<td>27,2</td>
<td>27,3</td>
<td>27,8</td>
<td>28</td>
</tr>
<tr>
<td>12</td>
<td>25</td>
<td>26,2</td>
<td>26,1</td>
<td>25,8</td>
<td>26,1</td>
<td>26,3</td>
<td>26,6</td>
<td>26,7</td>
<td>26,4</td>
</tr>
<tr>
<td>15</td>
<td>24</td>
<td>25,1</td>
<td>25</td>
<td>24,1</td>
<td>24,6</td>
<td>25</td>
<td>25,7</td>
<td>25,4</td>
<td>25,3</td>
</tr>
<tr>
<td>18</td>
<td>23</td>
<td>24,6</td>
<td>23,3</td>
<td>23,2</td>
<td>23,1</td>
<td>23,5</td>
<td>25,5</td>
<td>25,2</td>
<td>23,7</td>
</tr>
<tr>
<td>21</td>
<td>22</td>
<td>23</td>
<td>22,5</td>
<td>21,8</td>
<td>22,8</td>
<td>23,1</td>
<td>23,3</td>
<td>23,6</td>
<td>23,2</td>
</tr>
<tr>
<td>24</td>
<td>21</td>
<td>21,7</td>
<td>21,5</td>
<td>20,9</td>
<td>22</td>
<td>21,4</td>
<td>21,5</td>
<td>21,6</td>
<td>22,2</td>
</tr>
<tr>
<td>27</td>
<td>20</td>
<td>21,6</td>
<td>20,8</td>
<td>20,1</td>
<td>20,5</td>
<td>21,1</td>
<td>20,3</td>
<td>21</td>
<td>20,9</td>
</tr>
</tbody>
</table>
Vliv teploty na průměrný přírůstek

Sledovali jsme vliv průměrné teploty na průměrný přírůstek. Z grafu 17 vyplývá, že u obou typů hybridů je zcela konstantně stejná teplota a odlišné průměrné denní přírůstky. S počtem přibývajících dní a s klesající teplotou, stoupají průměrné denní přírůstky kuřat.
5.8 Úhyny

Úhyny v jednotlivých turnusech

Průměrné procento úhynu v jednotlivých turnusech se pohybovalo okolo 3 %. Největší úhyn však zaznamenaly v turnuse 6/15, kdy jeho hodnota činila 4,8 %. Nejmenší úhyn byl v turnuse 12/15, který byl 1,3 %. Ostatní turnusy jsou ve značné vyrovnanosti. Podle průzkumu Doktorové (2007) dochází k větším úhynům (okolo 5 %) v letních měsících.

![Graf 18 Celkový úhyn v turnusech (%)](image)

Úhyny v jednotlivých obdobích k 35. dni

Pro zhodnocení % úhynu u hybridů ROSS a COBB bylo zvoleno rozdělení na jednotlivé období. Větší průměrný úhyn byl zaznamenán u hybrida ROSS, hlavně v letních měsících. Celkové úhyny byly lepší u COBB 500. Procenta jsou uvedena ve stovkách.

![Graf 19 Průměrné úhyny v jednotlivých obdobích](image)
5.9 Naskladněné a vyskladněné kusy

Z grafu 20 a tabulky 12 vidíme, že nejvyšší brakace a úhyn proběhl v turnuse 6/15, kdy celkové množství bylo 1013 ks. Naopak v turnuse 1/16 byl úhyn a brakace minimální a to, na hodnotě 132 ks. Závislost na základě korelačního koeficientu vyšla 0,981835, tudíž počet naskladněných kusů na hale neovlivňuje hodnotu úhynu a brakace.

Tabulka 12: Přehled celkových kusů

<table>
<thead>
<tr>
<th>turnus</th>
<th>vyskladněné kusy (ks)</th>
<th>brakace + úhyn (ks)</th>
<th>Naskladněno celkem (ks)</th>
<th>% dožitých kuřat</th>
</tr>
</thead>
<tbody>
<tr>
<td>9/14</td>
<td>18 105</td>
<td>615</td>
<td>18 720</td>
<td>96,37 %</td>
</tr>
<tr>
<td>11/14</td>
<td>18 233</td>
<td>667</td>
<td>18 900</td>
<td>96,82 %</td>
</tr>
<tr>
<td>1/15</td>
<td>17 764</td>
<td>584</td>
<td>18 348</td>
<td>96,85 %</td>
</tr>
<tr>
<td>3/15</td>
<td>19 321</td>
<td>569</td>
<td>19 890</td>
<td>97,21 %</td>
</tr>
<tr>
<td>4/15</td>
<td>20 402</td>
<td>598</td>
<td>21 000</td>
<td>97,24 %</td>
</tr>
<tr>
<td>6/15</td>
<td>19 597</td>
<td>1013</td>
<td>20 610</td>
<td>95,2 %</td>
</tr>
<tr>
<td>8/15</td>
<td>20 178</td>
<td>522</td>
<td>20 700</td>
<td>97,6 %</td>
</tr>
<tr>
<td>10/15</td>
<td>20 175</td>
<td>615</td>
<td>20 790</td>
<td>97,1 %</td>
</tr>
<tr>
<td>12/15</td>
<td>20 523</td>
<td>277</td>
<td>20 800</td>
<td>98,7 %</td>
</tr>
<tr>
<td>1/16</td>
<td>19 980</td>
<td>132</td>
<td>20 112</td>
<td>98,1 %</td>
</tr>
<tr>
<td>Celkem</td>
<td>194 278</td>
<td>5592</td>
<td>199 870</td>
<td>97,2 %</td>
</tr>
</tbody>
</table>

Graf 20 Kusy kuřat
5.10 Index efektivnosti výkrmů

Pro sledování efektivnosti jednotlivých výkrmů lze využít vzorec, který zohledňuje % dožitých kuřat, živou hmotnost v kg, stáří a konverzi krmiva. S rostoucí hodnotou indexu je lepší užitkovost. Jelikož nemáme data ohledně konverzí v jednotlivých turnusech je zde použita teoretická hodnota 1,75 kg.

Turnus 9/14

\[
\frac{\% \text{ dožitých } x \text{ živá hmotnost v kg}}{\text{stáří ve dnech } x \text{ konverze krmiva}}
\times 100 = \frac{96.37 \times 2.35}{39 \times 1.75} = 335
\]

Turnus 11/14

\[
\frac{\% \text{ dožitých } x \text{ živá hmotnost v kg}}{\text{stáří ve dnech } x \text{ konverze krmiva}}
\times 100 = \frac{96.82 \times 2.17}{39 \times 1.75} = 308
\]

Turnus 1/15

\[
\frac{\% \text{ dožitých } x \text{ živá hmotnost v kg}}{\text{stáří ve dnech } x \text{ konverze krmiva}}
\times 100 = \frac{96.85 \times 2.33}{41 \times 1.75} = 314
\]

Turnus 3/15

\[
\frac{\% \text{ dožitých } x \text{ živá hmotnost v kg}}{\text{stáří ve dnech } x \text{ konverze krmiva}}
\times 100 = \frac{97.21 \times 2.29}{38 \times 1.75} = 335
\]

Turnus 4/15

\[
\frac{\% \text{ dožitých } x \text{ živá hmotnost v kg}}{\text{stáří ve dnech } x \text{ konverze krmiva}}
\times 100 = \frac{97.24 \times 1.9}{36 \times 1.75} = 293
\]

Turnus 6/15

\[
\frac{\% \text{ dožitých } x \text{ živá hmotnost v kg}}{\text{stáří ve dnech } x \text{ konverze krmiva}}
\times 100 = \frac{95.2 \times 2.15}{39 \times 1.75} = 300
\]
Turnus 8/15
\[\frac{\text{% dožitých x živá hmotnost v kg}}{\text{stáří ve dnech x konverze krmiva}} \times 100 = \frac{97,6 \times 1,98}{38 \times 1,75} = 291 \]

Turnus 10/15
\[\frac{\text{% dožitých x živá hmotnost v kg}}{\text{stáří ve dnech x konverze krmiva}} \times 100 = \frac{97,1 \times 2,30}{42 \times 1,75} = 304 \]

Turnus 12/15
\[\frac{\text{% dožitých x živá hmotnost v kg}}{\text{stáří ve dnech x konverze krmiva}} \times 100 = \frac{98,7 \times 1,7}{32 \times 1,75} = 300 \]

Turnus 1/16
\[\frac{\text{% dožitých x živá hmotnost v kg}}{\text{stáří ve dnech x konverze krmiva}} \times 100 = \frac{98,1 \times 1,8}{35 \times 1,75} = 288 \]

Graf 21 Index efektivnosti

Z grafu 21 lze vyčíst, že index efektivnosti chovů je vcelku nevyrovnaný. Nejefektivnější byl turnus v březnu 2015 s hodnotou 335. Došlo k nejlepšímu vztahu mezi % dožitých kuřat, jejich hmotností, stáří a konverzi krmiva.
6 ZÁVĚR

Drůbežnictví je velmi zajímavý a perspektivní odvětví v zemědělství dnešní doby. V roce 2004 jsme jako Česká republika vstoupili do Evropské unie a tím se pro nás otevřeli možnosti dotačních podpor, zejména z programu Rozvoje venkova. Podpora drůbeže je značná a tím jsou zemědělci schopni pokrýt část svých nákladů na výkrm. Nejvyšší nákladovou položkou jsou náklady na krmení, které činí až 70 % ze všech nákladů na výkrm. Chovatelé se snaží spolu s chovem drůbeže michat vlastní směsi v mobilní či stacionární michárně krmných směsí. Mohou si tak namerativě krmnou směs z vlastních levnějších surovin a ostatní jako jsou minerální doplňky, vitamíny a jiná aditiva si nakoupí od výrobců. Mezi další náklady patří energie, potřeba práce aj.

Řadu lidí zaskočí krátký výkrm, který je průměrně 37 dní do hmotnosti až 2,5 kg. Díky několika studiím docházelo ke šlechtění hybridů a k úpravám krmných směsí tak, aby měly všechny parametry přesně navržené pro danou kategorii dle jejich potřeb. Tím dochází k tomu, že kuře je schopné denně přibírat od 20 – 80 g, protože je mu neustále k dispozici kvalitní krmení splňující všechny parametry pro růst a vývoj těla.

Nášlapná váha je výborným pomocníkem v tzv. kontrole ,,na dálku“. Pokud se připojíme na GPRS signál, tak jsme schopni okamžitě načíst data a zjistit jaké jsou na hale přírůstky, hodnoty vlhkosti a teplot. Další výhodou váhy je neustálé vynulování nášlapného místa. Tím dochází k evidenci váhy každého kuřete, které stoupne na váhu. Váha si také pamatuje, kolik byla hmotnost v předešlém dni a pokud by kuře stouplo na místo části těla tak nedojde k zápisu. Mezi možné nevýhody váhy patří její umístění na jednom místě po celý turnus. Troufneme si říci, že se výsledky hmotnosti kuřat mohou lehce lišit, pokud jsou kuřata uprostřed haly či na jejich okrajích. Další možnou nevýhodou může být nastavená jedna průměrná růstová křivka pro oba typy brojlerů. V tabulce 1, kde jsou uvedené růstové křivky pro COBB i ROSS, lze vidět patrný rozdíl zejména od 13. dne u COBBA, který má vyšší přírůstky. V hodnocení nášlapných vah na vybrané farmě by bylo do budoucna vhodné rozšířit měření na ostatní haly. Farma má totiž specifickou stavbu hal a to takové, že zde mají dvě dvoupatrové haly. Každé patro má jiný půdorys – specifické stropy, pružnosti po úpravách bývalého kravínů.
Cílem práce bylo vyhodnotit výkrm na nášlapné váze. Z dostupných dat z váhy a od zootechničky se podařilo statisticky a graficky vyhodnotit turnusy od roku 2014 až do roku 2016. Mezi zajímavost patří fakt, že se potvrdila menší aktivita kuřat s přibývající hmotností. Doporučením pro vybranou farmu by mohl být chov hybridů ROSS 308 v letních měsících, plemene COBB 500 v zimních měsících a v přechodném období byly výsledky obou hybridů podobné.

Brojleři mají své specifické nároky na chov a jsou zvířata jako každá jiná. Chovatelé by jim měli zajistit kvalitní výživu, dodržet parametry v prostředí haly a několik dalších důležitých zásad, které celkově ovlivňují chov. Následné výsledky turnusu ovlivňuje také kvalita vajec z lihní, doba převozu jednodenních kuřat, stáří a výživa rodičů, vnitřní prostředí stáje a následná péče od zootechniků. Věřím, že chovatelé nevidí pouze vidinu zisku, ale postarají se i o to, aby byl chov takový, jaký má být.
POUŽITÁ LITERATURA

Seznam literárních zdrojů

AVIAGEN, 2010: Brojler: Řízení prostředí v hale pro výkrm brojlerů. Ross

ZIMOVÁ S., 2015: Stavy a užitkovost drůbeže v ČR v roce 2014. Ústrašice: Mezinárodní testování drůbeže: 52 s.
Seznam internetových zdrojů

61

Ostatní zdroje
Zelenka J., 2016: Kurz krmivářství Mendelu: Aditiva – ústní sdělení
Zelenka J., 2016: Kurz krmivářství Mendelu: Drůbež I. a II. – ústní sdělení
Joch M., 2016: ústní sdělení
8 SEZNAM GRAFŮ, OBRÁZKŮ A TABULEK

Seznam grafů
Graf 1 Vývoj počtu kuřat na výkrm
Graf 2 Zastoupení jednotlivých typů brojlerů
Graf 3 Průměrné zastoupení hybridů v jednotlivých časových obdobích
Graf 4 Porovnání průměrných hmotností s teoretickou hmotností Ross 308
Graf 5 Porovnání průměrných hmotností s teoretickou hmotností Cobb 500
Graf 6 Porovnání hmotností v letních a zimních měsících ROSS 308
Graf 7 Porovnání hmotností v letních a zimních měsících COBB 500
Graf 8 Uniformita hybridů v letním období
Graf 9 Uniformita hybridů v přechodném období
Graf 10 Uniformita hybridů v zimním období
Graf 11 Společná uniformita
Graf 12 Křivka průměrného množství kuřat na váze
Graf 13 Průměrná teplota v jednotlivých dnech
Graf 14 Přehled maximálních a minimálních teplot uvnitř haly
Graf 15 Průměrná teplota a vlhkost
Graf 16 Porovnání optimální a reálné teploty na hale ve vybraných dnech
Graf 17 Vliv teploty na průměrný přírůstek
Graf 18 Celkový úhyn v turnusech (%)
Graf 19 Průměrné úhny v jednotlivých obdobích
Graf 20 Kusy kuřat
Graf 21 Index efektivnosti

Seznam obrázků
Obr 1: Kuřata u krmítka
Obr 2: Kuřata u napáječek
Obr 3 a 4: Nášlapná váha na hale, úvodní stránka programu

Seznam tabulek
Tabulka 1: Optimální růstová křivka
Tabulka 2: Vlivy nebezpečných látek
Tabulka 3: Teplota a vlhkost vzduchu
Tabulka 4: Doporučené hodnoty – intenzita a délka dne
Tabulka 5: Přehled minerálních látek
Tabulka 6: Směsí pro různé fáze výkrmu
Tabulka 7: Hmotnost jednodenních kuřat
Tabulka 8: Počet kuřat na m²
Tabulka 9: Korelační koeficienty v různých fázích
Tabulka 10: Průměrné množství kuřat na váze
Tabulka 11: Optimální a reálné teploty ve vybraných dnech
Tabulka 12: Přehled celkových kusů