Hodnocení produkce mléka
Bakalářská práce

Vedoucí práce: Doc. Dr. Ing. Zdeněk Havlíček
Vypracovala: Lenka Němcová

Brno
Čestné prohlášení

Prohlášuji, že jsem práci: Hodnocení produkce mléka vypracovala samostatně a veškeré použité prameny a informace uvádím v seznamu použité literatury. Souhlasím, aby moje práce byla zveřejněna v souladu s § 47b zákona č. 111/1998 Sb., o vysokých školách ve znění pozdějších předpisů a v souladu s platnou Směrnici o zveřejňování vysokoškolských závěrečných prací.

Jsem si vědoma, že se na moji práci vztahuje zákon č. 121/2000 Sb., autorský zákon, a že Mendelova univerzita v Brně má právo na uzavření licenční smlouvy a užití této práce jako školního díla podle § 60 odst. 1 autorského zákona.

Dále se zavazuji, že před sepsáním licenční smlouvy o využití díla jinou osobou (subjektem) si vyžádám písemné stanovisko univerzity, že předmětná licenční smlouva není v rozporu s oprávněnými zájmy univerzity, a zavazuji se uhradit případný příspěvek na úhradu nákladů spojených se vznikem díla, a to až do jejich skutečné výše.

V Brně dne:……………………………

……………………………………………………..

Podpis
Poděkování

Abstrakt

Bakalářská práce se zabývá hodnocením tuzemské produkce mléka. V první části práce uvádím faktory, které ovlivňují množství a kvalitu produkce mléka a které ovlivňují jeho zpeněžování. Vliv jednotlivých faktorů je popsán nejen z hlediska celkové úrovně produkce, ale i z hlediska ekonomického. V druhé části práce se věnuji situaci na trhu s mlékem. Uvádím základní údaje o trhu s mlékem v České republice a porovnávám je se situací na evropském trhu. V poslední části práce pojednávám o působení EU na naší mléčnou produkci. Aktuální změnou, kterou jsem v práci popsala, je zrušení mléčných kvót.

Klíčová slova: mléko, dojnice, užitkovost, efektivita produkce, trh s mlékem, Evropská unie

Abstract

This bachelor thesis deals with evaluation of national milk production. In the first part of the thesis I mention elements, which influence quantity and quality of produced milk, and elements, which influence it’s encashment. The influence od the elements is described in connection with level of production and also in connection with economical aspects. In the second part of the thesis I described the situation on trade in milk. I mention primary data about national trade in milk and I compare them with data from europian trade in milk. The last part of thesis is oriented on the influence of EU on national milk production. Actual change i paid attention to was EU quotas abolition.

Key words: milk, dairycow, production efficiency, trade in milk, European union
OBSAH

ÚVOD ... 7
CÍL A METODY PRÁCE .. 8
1 VÝZNAM CHOVU SKOTU .. 9
 1.1 Produkce mléka ... 9
2 PLEMDNA SKOTU .. 10
 2.1 Evropská plemena s mléčnou užitkovostí .. 10
 2.2 Charakteristika jednotlivých plemen skotu ... 11
 2.2.1 Mléčná plemena skotu ... 11
 2.2.2 Kombinovaná plemena skotu .. 14
 2.3 Chov dojených plemen v ČR .. 16
 2.3.1 Stav dojených plemen v ČR .. 16
3 VÝŽIVA A KRMENÍ .. 19
4 WELFARE DOJNIC ... 22
5 USTÁJENÍ DOJNIC ... 24
 5.1 Ustájení vazné ... 25
 5.2 Ustájení volné ... 25
6 NEJČASTĚJŠÍ ONEMOCNĚNÍ DOJNIC ... 27
 6.1 Nemoci končetin .. 27
 6.2 Acidóza .. 28
 6.3 Mastitida .. 29
 6.4 Ketóza .. 30
 6.5 Poporodní paréza .. 32
7 UKAZATELE JAKOSTI MLÉKA .. 33
 7.1 Celkový počet mikroorganismů .. 33
 7.2 Počet somatických buněk ... 33
 7.3 Rezidua inhibičních látek ... 33
 7.4 Bod mrznutí mléka ... 33
 7.5 Obsah mléčných složek ... 34
 7.6 Nákup a zpeněžování mléka .. 35
8 SOUČASNÁ SITUACE NA TRHU S MLÉKEM ... 36
 8.1 Stavy skotu v ČR .. 36
ÚVOD

Chov skotu a s ním spojená produkce mléka a hovězího masa je významnou součástí agrárního sektoru. Mléko a mléčné výrobky tvoří velkou část základních potravin a jsou zdrojem živočišných bílkovin ve výživě lidí. Chov skotu je navíc propojen s půdou, pomáhá udržovat a zlepšovat její úrodnost. Přestože je dnes produkce mléka vysoce mechanizovaná, stále je při ošetřování krav potřeba lidské práce. To je důvodem, proč chov dojnic zajišťuje volná pracovní místa. Ještě více pracovních míst je v rozsáhlém zpracovatelském průmyslu, který s chovem skotu souvisí.

Na počátku 90. let minulého století prošlo zemědělství změnou v podobě přechodu z centrálně plánovaného na tržní hospodářství. Změna se dotkla nejen zemědělství, ale i všech ostatních ekonomických činností. Přechod na tržní hospodářství měl velký vliv na spotřebitelské chování lidí. Produkce mléka byla změnou velmi ovlivněna. Cena mléka a mléčných výrobků se výrazně zvýšila, spotřeba se naopak snížila. Po otevření hranic pro zahraniční konkurenci se na nás trh dostaly zahraniční výrobky a vytvořily silnou konkurenci pro domácí výrobu. Naplně se projevily rozdíly v efektivnosti zahraničních a tuzemských producentů mléka. Na tuzemské chovatele padl velký tlak v nutnosti zefektivnit produkci mléka.

Chov dojnic a produkce mléka je složitý systém. Produkci a cenu mléka a mléčných výrobků ovlivňuje mnoho faktorů. Pro neustále zlepšování našich chovů dojnic a zvyšování konkurenceschopnosti na mezinárodním trhu je nezbytné si uvědomit vliv jednotlivých faktorů na množství i na kvalitu produkované suroviny. Pokud si budou chovatele vědomi vlivu jednotlivých faktorů na produkci, budou moci naopak zvyšovat množství i kvalitu produkce mléka a snižovat náklady na produkci, a tím budou zlepšovat svou ekonomickou situaci.
CÍL A METODY PRÁCE

Cílem bakalářské práce je uvést a popsat faktory, které ovlivňují produkci mléka. V práci jsou uvedeny faktory, které ovlivňují velikost produkce a kvalitu mléka, dále faktory ovlivňující výkup a zpeněžení mléka. Další část práce se zabývá trhem s mlékem. U popisu jednotlivých faktorů je uvedeno, jak působí na množství a kvalitu produkovaného mléka a na rentabilitu chovu dojnic.

Teoretické informace uvedené v bakalářské práci byly zpracovány metodou literárního rešerše. Při hodnocení vlivu faktorů i posouzení situace na trhu byly využity metody indukce a dedukce.
1 VÝZNAM CHOvu SKOTU

Chov skotu je podstatnou součástí agrárního sektoru. Mléko a mléčné výrobky jsou pro lidstvo významným zdrojem živočišných bílkovin, hovězí maso je pro lidské tělo v určitém množství velmi prospěšné. Navíc je produkce mléka, mléčných výrobků a masa propojená s dalšími zpracovateli, čímž se utváří mnoho pracovních míst. Chov skotu je úzce spojen se zemědělskou půdou a napomáhá zlepšování její úrodnosti, ať už se jedná o statková hnojiva, nebo pěstování pícnin ke krmným účelům. Tyto výhody se projeví především v dnešní době, kdy družstva často hospodaří bez živočišné produkce a mají problém s udržením půdní úrodnosti. Průmyslová hnojiva nemohou dlouhodobě zcela nahradit hnojiva statková, tím dochází při intenzivním využívání půdy k poklesu její úrodnosti. Zemědělské firmy pouze s rostlinnou produkci mají navíc velmi jednotvarý osevní postup, kdy pěstují především obilniny a řepku. Obilniny jsou velmi náročné na půdní podmínky, půdu vyčerpávají a snižují její úrodnost. Pícniny naopak pomáhají zlepšovat půdní úrodnost a jsou cennou složkou osevních postupů. Problémem u úzkých osevních postupů jsou i škůdci, kteří mají v pěstování hostitelských plodin stále po sobě na stejných nebo blízko sousedících pozemcích ideální podmínky pro svůj rozvoj. Významný vliv na chov skotu v České republice (ČR) má vstup do Evropské unie (EU), ať už se jedná o dotace, vyměřené kvóty na produkci mléka nebo dotace na chov krav bez tržní produkce mléka.

1.1 Produkce mléka

Celosvětově je nejvíce skot chován v Asii a Americe. Pokud uvážíme rozdělení podle států, tak se nejvíce kusů skotu chová v Indii, Spojených státech amerických, Brazílii, Číně, Rusku a Argentině. K dojení mléka pro lidský konzum se využívají různá plemena skotu různého zaměření, nejčastěji se dojí plemena s mléčnou a kombinovanou užitkovostí. Užitkovost dojených krav se odvíjí podle místa výskytu, úrovně zemědělské výroby a technologií. Největší užitkovostí dojených krav se dosahuje v Severní Americe a v Evropě, což jsou regiony s tradicí v konzumaci mléka a mléčných výrobků (Urban, 1997).
2 PLEMENA SKOTU

Ve světě se celkově nachází přes 300 plemen skotu. Jedná se o plemena s tržní produkci mléka (mléčná a kombinovaná plemena), dále o plemena bez tržní produkce mléka (patří sem i skot využívaný v tahu a chovaný pro býčí zápasy). V Evropě se ještě před Druhou světovou válkou nacházelo velký počet různých plemen skotu, ale poté, co došlo k relativnímu otevření hranic a vzniku konkurenčního prostředí, došlo k útlumu v chovu mnoha plemen. I díky použití inseminace se rychle rozšířovala plemena pro chovatele nejvýhodnější. Nejvýrazněji se to projevilo v expanzi černostrakatého holštýnského skotu ze Severní Ameriky do celého světa, kdy plemeno výrazně ovlivnilo i plemena evropského černostrakatého nížinného skotu. U dojených plemen vysoce převažuje mléčná užitkovost, která zajišťuje dobrou rentabilitu chovu. Mléčná užitkovost pak může být doplněna i dobrou masnou užitkovostí zvířat. Z toho plyne rozdělení dojených plemen na plemena s mléčnou užitkovostí a plemena kombinovaná. Plemena můžeme rozdělit i na světová a místní. Světová plemena jsou významná v produkci ve více světadílech. Místní plemena mohou být početná, ale jsou významná pro jednu zemi nebo region. Volba plemene je důležitým rozhodnutím pro chovatele dojnic, protože genetika dojnice ovlivňuje nejen množství nadojeného mléka, ale má vliv i na obsah mléčných složek, zdravotní stav zvířat nebo odolnost vůči stresu (Urban, 1997; Bouška, 2006).

2.1 Evropská plemena s mléčnou užitkovostí

V Evropě převažuje chov dojených plemen skotu, protože právě produkce mléka dokáže v podmínkách evropského trhu zajistit dobrou rentabilitu chovu (v dnešní době se přesto zvyšuje počet krav chovaných bez tržní produkce mléka v závislosti na dotační politice EU). Dnes nejvýznamnější jsou v Evropě plemena černostrakatého nížinného skotu, která jsou využíváním severoamerických plemeníků převáděna na skot holštýnský. Holštýnský skot se v dnešní době nachází ve většině států Evropy. Přesto se vlivem různých úrovní produkčních systémů utváří rozdíly v realizaci produkčních vlastností plemene. Mezi další plemena s mléčnou užitkovostí chovaná v Evropě řadíme ayrshire nebo jersey (Urban, 1997).
Tradiční je pro Evropu chov plemen s kombinovanou užitkovostí (mléčnou i masnou), který ale v dnešní době čelí velkému tlaku ze strany chovatelů holštýnského skotu. Nejvýznamnější skupinou plemen kombinované užitkovosti jsou plemena horského strakatého skotu, které mají svůj původ v plemenu simentálském a řadí se sem švýcarský strakatý skot, německý strakatý skot, rakouský strakatý skot, montbéliardský skot a pro nás nejvýznamnější český strakatý skot. Různým způsobem šlechtění dosáhlo plemeno v odlišných oblastech rozdílných úrovní produkce. Dále se v Evropě nacházejí méně významná a méně početně zastoupená plemena jako skupina hnědého horského skotu, nebo skupina černostrakatého nížinného skotu (Urban, 1997).

2.2 Charakteristika jednotlivých plemen skotu
Na následujících stránkách jsou shrnuty základní charakteristické rysy nejvýznamnějších dojených plemen skotu, které jsou významné při produkci mléka.

2.2.1 Mléčná plemena skotu
Mezi nejvíce rozšířená plemena skotu s mléčnou užitkovostí řadíme černostrakatý skot holštýnský. Další především regionálně významná jsou plemena jersey a ayrshire.

2.2.2.1 Černostrakatý skot
Černostrakatý skot je nejrozšířenějším na světě, vyznačuje se nejvyšší mléčnou užitkovostí a má významný vliv v chovu, kdy pomáhá zlepšovat ostatní plemena skotu. Tento skot pochází ze severozápadu Evropy, z oblasti Frísla, Severoněmecké nížiny, Jutská. Různé populace skotu vzniklé na základě podmínek daného prostředí se postupně spojily v jedno plemeno. Černostrakatý skot je charakteristický černostrakatým zbarvením celého těla s černou hlavou, na které se často vyskytuje bílá hvězda nebo lysina. Stále se ale rodi určité procento černostrakatých jedinců (v Evropě jich je důsledkem šlechtění méně, v USA se vyskytuje až 10% černostrakatých jedinců, protože se zde šlechtílo podle jiných parametrů než v Evropě). Tito jedinci jsou recesivní homozygoti pro černostrakaté zbarvení a označují se názvem red holstein. Černostrakatí býci jsou využívaní v zušlechtování černostrakatých i hnědých plemen skotu. U těchto krav je požadován velký tělesný rámec (požadovaná kohoutková výška krav v dospělosti je 147cm, živá hmotnost 680kg). Dobře vyvinuté středočtyří dává předpoklad ke konzumaci velkého množství krmiva. Dále je kladen důraz na dobře utvářenou záď, končetiny a vemení krav.

Plemeno černostrakatého skotu je šlechtěno na vysokou mléčnou užitkovost.

Obrázek 1 Holštýnská dojnice
Zdroj: Genoservis

2.2.2.2 Jersey
Plemeno jersey pochází ze stejnojmenného ostrova v Lamanšském průlivu. Jedinci jerseyského plemene jsou menšího tělesného rámce (krávy měří okolo 120cm v kohoutku a váží okolo 400kg). Barva plemene je různá od žluté přes hnědou a červenou až k šedé. Pro plemeno je typická malá, v čele prohnutá (štíčí) hlava se širokým mulcem a bílým pruhem kolem mulce. Krávy mají velmi dobře utvářené vemeno a končetiny. Mléko jerseyského skotu obsahuje velký podíl mléčněho tuku a bílkovin, je žlutě zabarvené karotenem a má velké tukové kupičky. Mléko je vhodné pro výrobu másla a sýrů. Mléčná užitkovost kolísá podle různých oblastí chovu od 4000 po 7000kg mléka za laktaci. Obsah tuku v mléku se pohybuje od 4,5 do 6%, obsah

Obrázek 2 Dojnice plemene jersey
Zdroj: Plemko, s.r.o.

2.2.2.3 Ayrshire
Ayrshirský skot je světové staré plemeno pocházející ze Skotska. Je to plemeno malého až středního rámce, výška v kohoutku u krav je okolo 130cm, hmotnost krav okolo 550kg. Vemeno je veliké, dobře upnuté, s kratšími struky. Zbarvení plemena je červenostrakaté, často s velkým podílem bílé barvy, ale hlava je zbarvená. Typické pro ayrshirský skot jsou dlouhé rohy. Krávy dojí od 5000kg do 8000kg mléka za laktaci, s obsahem tuku okolo 4% a obsahem bílkovin okolo 3,3%. Masná užitkovost není dobrá, krávy mají nízkou jatečnou výtěžnost, u býčků dochází k velkému ukládání tuku na úkor masitých částí. Plemeno ayrshire vyniká pevnou konstitucí, skromností, odolností, dobrou pastevní schopností, plodností a dlouhověkostí. Plemeno se podílelo na zušlechťování strakatých plemen skotu s cílem zvýšení mléčné užitkovosti, pastevní schopností a kvality vemene, a to i u českého strakatého skotu (Urban, 1997; Bouška, 2006).
2.2.2 Kombinovaná plemena skotu

V Evropě se chová velký počet krav s kombinovanou užitkovostí, kdy se šlechtěním vytvořila plemena a typy skotu s výrazně masnou, vyrovnanou a výrazně mléčnou užitkovostí, stále ale v zachování kombinovaného užitkového typu.

2.2.2.1 Strakatý skot

Strakatý skot je plemeno kombinované užitkovosti, které odvíjí svůj původ především od švýcarského skotu símentálského a bernského. Toto plemeno je po holštýnském skotu druhým nejrozšířenějším plemenem v Evropě. V různých zemích Evropy došlo ke šlechtění různých typů strakatého skotu podle potřeb dané oblasti, často křížením símentálských a bernských býků s krávami z dané oblasti. Strakatý skot se tedy dělí na švýcarský strakatý skot, německý strakatý skot, rakouský strakatý skot, montbeliard a pro nás nejvýznamnější český strakatý skot. Strakatý skot je dlouhodobě šlechtěn na poměr užitkovosti mléko: maso = 60 %: 40 %. Strakatý skot nadoji 6-7 tis. kg mléka za laktaci s vysokým obsahem tuku i bílkovin. Denní přírůstek u býků ve výkrmu by měl být minimálně 1300 g. Jatečná výtěžnost by měla být více než 60 % s vysokým podílem kvalitního masa (70 %) (Urban, 1997; Bouška, 2006).
Švýcarský strakatý skot - simentálský

Tento skot je typickým představitelem kombinované užitkovosti. Má široký kohoutek, hřbet a bedra, silnější kostru a dobré osvalení, pevnou konstituci. U krav se kohoutková výška pohybuje okolo 140 cm a váha okolo 700 kg. Barva je žlutostrakatá i červenostrakatá, s bílou hlavou, hřbetem, končetinami a chvostem ocasu. Bělohlavost je pro toho plemeno dominantním znakem. Plemeno se šlechtí na vysokou masnou a mléčnou užitkovost, dobré zdraví a plodnost, přizpůsobivost a schopnost přijímat velký objem krmiva. Krávy nadávají přes 6000 kg mléka za laktaci s obsahem bílkovin okolo 3,5 % a s obsahem tuku okolo 4 %. Denní přirážek vykrmených žvýkat je 1300 g, jatečná výživnost by měla být více než 60 % s podílem masa 70 %. Požaduje se velmi dobrá kvalita masa a dobrá růstová intenzita do vysokých poražkových hmotností. Simentálský skot je velmi variabilní v užitkových i exteriérových znacích a umožňuje selekci v požadovaném užitkovém typu od výrazně mléčných až po výrazně masných typů, vždy při zachování relativně dobré hodnoty druhé užitkové vlastnosti (Urban, 1997; Bouška 2006).

Montbeliard

Plemeno pochází ze skotu simentálského a bernského, bylo vyšlechtěno ve Francii. Byla u něj dlouhodobě uplatňovaná čistokrevná plemenitba a selekce se zaměřovala na užitkovost mléčnou s mlékem vhodným na výrobu sýrů. Plemeno je většího tělesného rámce s kohoutkovou výškou krav okolo 140 cm a váhou okolo 700 kg. Zbarvení je červenostrakaté, často s velkým podílem bílé barvy. Plemeno je kombinované užitkovostí se zvýrazněnou mléčnou produkcí a s mlékem s vyšším obsahem bílkovin. Krávy dojí okolo 6500 kg mléka za laktaci s obsahem bílkovin okolo 3,5 % a s obsahem tuku okolo 3,8 %. Masná užitkovost je dobrá, býci se mohou vykrmovat i do vyšších poražkových hmotností. U montbeliardského skotu se využívá přípraování masnými býky pro produkci jatečných telat. Montbeliardský skot je konstitučně pevný, dlouhověký a s dobrou pastevní schopností. Plemenitci jsou využíváni v zušlechtování fylogeneticky příbuzných plemen, mezi které patří i český strakatý skot (Urban, 1997; Bouška 2006).
2.3 Chov dojených plemen v ČR

Chov krav s tržní produkci mléka vždy patřil mezi hlavní odvětví zemědělské výroby. Po přechodu na tržní hospodářství na počátku 90. let minulého století ale zasáhlo chovatele prudké zvyšování ceny mléka a tím snižování spotřeby, a to dovedlo mnoho chovatelů skotu ke krachu. Došlo k obrovským poklesům ve stavech skotu. Nutnost přizpůsobit se trhu vedla k výrazným změnám v tuzemských chovech dojnic, ať už se jedná o úroveň chovů, nebo skladbu plemen chovaných pro mléčnou produkci.

2.3.1 Stav dojených plemen v ČR

a chorob rostlin, a tím se zvyšují náklady na ochranné postřiky a zvyšuje se i zátěž životního prostředí. Chov skotu byl a stále je významnou součástí mnoha zemědělských podniků.

Původní skot, staročeské červinky, chovaný na území ČR, byl malého tělesného rámce, červeného zbarvení, s nízkou produkci mléka. Dříve se mléko příliš nekonzumovalo a skot se choval především na maso a k tahu, byl velmi skromný a odolný. V druhé polovině 19. století rostl tlak na zvýšení produkce krav a do našich zemí se začalo hojně dovážet hodně zahraničních plemen. Problémem v počátcích zvyšování produkce mléka bylo pomalé zvyšování úrovně chovu a produkce, kdy tyto nedostatky nemohly nahradit ani potenciálně lepší dovezená plemena. Nižinná plemena proto příliš neobstála pro jejich náročnost chovu, ale horská plemena se využívala. Největší vliv měl skot simetálský a bernský dovezený ze Švýcarska, který dal základ vzniku českého strakatého skotu. Významný vliv na jeho utváření měla i systematická kontrola užitkovosti krav v první polovině 20. století. V druhé polovině 20. století docházelo k dalšímu zušlechtování českého strakatého skotu a k využívání dalších plemen jako ayrshire nebo red holstein (Urban, 1997; Bouška, 2006).

Dnes se v ČR chovají nejvíce dvě plemena, a to český strakatý skot (s kombinovaným užitkovým typem) a holštýnský skot (mléčná užitkovost). V menším počtu se u nás setkáme i s dalšími plemeny jako montbeliard, ayrshire nebo jersey.

Chov skotu v ČR je a nadále bude velmi ovlivňován působením EU, ať už se jedná o stanovené kvóty na mléko a jejich zrušení v dubnu roku 2015, nebo dodržování jiných podmínek v oblasti zdravotního stavu a welfare (neboli pohody) chovaných zvířat, stejně jako podmínky produkce bezpečných potravin.

2.3.1.1 Český strakatý skot
Český strakatý skot (čestr) je původním plemen na území ČR a v dnešní době zastupuje asi polovinu z celkového počtu skotu chovaného na našem území. Chovným cílem plemene je produkce kvalitního mléka s vysokým obsahem mléčných složek a chuťově výrazného masa. Produkce mléka dosahuje průměrně 6500 až 7000 kg mléka za laktaci, s obsahem bílkovin kolem 3,5 % a obsahem tuku okolo 4 %. Denní přírůstek ve výkrmu je limitovaný hodnotou 1300 g v intenzivním výkrmu býků, jatečná
výtěžnost se pohybuje kolem 60 %. Čestr je skot středního až většího tělesného rámce s dobrým osvalením a harmonickou stavbou těla. Plemeno se vyznačuje dobrým zdravím a plodností, snadnými porody, bezproblémovým odchovem a dobrou schopností přijmout velký objem krmiva a dobře ho využít. Variabilita uvnitř plemene stejně jako křížení s mléčnými nebo naopak masnými plemeny poskytuje široké využití plemene přesně podle požadavků jednotlivých chovatelů (Svaz chovatelů českého strakatého skotu, 2008).

Obrázek 5 Dojnice plemene čestr
Zdroj: Svaz chovatelů českého strakatého skotu
3 VÝŽIVA A KRMENÍ

Výživa patří k hlavním faktorům, které ovlivňují produkcí mléka a její následnou rentabilitu. Náklady na krmiva tvoří 30 až 50% všech nákladů na produkci mléka, čímž značně ovlivňují výsledný zisk z produkce. Na druhou stranu s rostoucí mléčnou produkci krav rostou i požadavky na krmivo.

„Krmivo zajišťuje skotu přijem dusíkatých látek, energie (hrubé vlákny, sacharidů, tuku), minerálních látek, vitamínů a některých specifických látek. Krmná dávka pro dojnice musí být v každé fázi mezidobí vyrovnaná a musí odpovídat aktuálním požadavkům zvířete“ (Urban a kol., 1997).

Nedostatek stejně jako nadbytek živin způsobuje řadu onemocnění. Následné problémy spojené s onemocněním jako brakace, náklady na léčiva a veterinární péči, zvýšení nákladů při nákupu nových zvířat i ztráty spojené s úbytem produkce nebo problémy s reprodukcí negativně ovlivňují ekonomiku produkce a celého chovu (Veselý, 2001).

V současnosti probíhá krmení dojnic směsnou krmnou dávkou (TMR, z anglického total mixed ration). Hlavní složkou TMR jsou konzervovaná krmiva, především siláže. Vlastnosti TMR mají vliv na zdraví a užitkovost dojnic i kvalitu mléka. Nutriční hodnota TMR pak ovlivňuje i ekonomiku chovu a produkce mléka. Výživa je jeden z hlavních faktorů, který ovlivňuje nejen množství nadojeného mléka, ale i obsah složek, hygienickou jakost a technologické vlastnosti mléka (Doležal a kol., 2009).

TMR pro dojnice musí být dostatečně pestrá, živinově vyrovnaná, nutričně, dieteticky a hygienicky stabilní (bez plísní a toxinů, hnilobných bakterií). Hlavní problémy při zkrmování TMR jsou nesprávný poměr dusíkatých látek k energii, nevhodná struktura krmiva (přemíchání TMR, nedostatek strukturních krmiv jako sláma nebo seno), nebo vysoké dávky šrotů a vlhkých obilovin. Zkrmování takových TMR vede k poruše činnosti bachoru a projeví se změněným obsahem mléčných složek, neboť stálost bachorového prostředí je hlavním předpokladem pro příznivý obsah mléčných složek, především tuku a bílkovin (Doležal a kol., 2009).

Krmiva jsou nedílnou součástí potravinového řetězce. Pokud se mají produkovat bezpečně, kvalitní potraviny, musí se stejně jako podmínkám při získávání mléka
věnovat pozornost i výživě dojnic. Nesmí se podcenit správné technologie sklizně, konzervace a skladování krmiv, správné sestavení a připravení TMR. K velkému zlepšení v produkci mléka došlo v ČR po zavedení krmení TMR pomocí mobilních míchacích vozů, zlepšila se tím i efektivnost výroby mléka (Doležal a kol., 2009).

TMR je krmná směs, která obsahuje všechna krmiva (objemná, jadrná, minerální) a uhrazuje živiny pro záchovu a pro produkci. Pro jednotlivé kategorie se sestavuje zvlášť. Kvalitní TMR zajišťuje vyrovnanou dávku a přesné dávkování složek pro jednotlivé kategorie a skupiny dojnic (vytvořené podle fáze mezidobí). Díky TMR zůstává bachorové prostředí stálé, dochází k lepšímu využívání živin a ke zvýšení produkce mléka. TMR pomáhá zabraňovat výběru chutnějších krmiv a vede ke snížení zbytků k zbraní. Zkrmování TMR by mělo probíhat ad libitum tak, aby v krmném žlabu byl před dalším krmením vždy zbytek. Nemělo by docházet k situacím, kdy by byl žlab prázdný, nebo naopak s velkým zbytkem. TMR navíc umožňuje zkrmovat i zbytky potravinářského průmyslu jako pivovarské mláto, cukrovarské řízky nebo lihovarské výpalky. Další výhodou TMR je i plná mechanizace procesu, vyšší rychlost nakrmení a omezení vlivu lidského faktoru (Doležal a kol., 2009).

Sušina TMR by se měla pohybovat mezi 48 až 60 %. Důležitý pro správnou funkci bachoru je obsah strukturální vlákniny (sláma, seno, délka částic nad 8 mm). Správná krmná dávka pro dojnice by měla obsahovat 15-16 % vlákniny v sušině, z toho 8 % strukturální vlákniny. Vláknina podporuje správný proces přežvykování. V bachoru dochází k trávení vlákniny na kyselinu octovou, která výrazně ovlivňuje tučnost mléka.

Při krmení dojnic v období stání na sucho by se měly vzít v úvahu individuální požadavky zvířat a jejich výživnou kondici. Překrmování krav v období stání na sucho vede k tučnění a ke vzniku závažných poporodních komplikací, například parézy nebo ketóz. Krávy se v tomto období krmí pouze kvalitními objemovými krmivy. Dva až tři týdny před porodem se postupně přidává do TMR jadrné krmivo, aby se adaptovala bachorová mikroflóra na jeho příjem po porodu (Doležal a kol., 2009).

Krávy v období rozdojovaní přijímají menší množství sušiny v krmivu. Zároveň jsou ale kladeny značné nároky na výživu dojnic v závislosti na jejich stoupající užitkovosti. Do TMR se zařadí jaderná krmiva dobře stravitelná, s menším obsahem vlákniny, s vysokým obsahem energie (např. kukuřičné siláže, později jadrná krmiva), pro krávy
chuťově atraktivní. Problémem u vysokoužitkových krav je, že se vrcholu užitkovosti dosáhne okolo 70. dne laktace, ale vrchol schopnosti přijímat krmivo je až kolem 120. dne. V období vrcholu užitkovosti dochází současně k nejvyššímu úbytku živé hmotnosti krav. Období 60 dnů před porodem a 100 dnů po porodu je proto v chovu dojných krav klíčové. Správným sestavením TMR v každém období mezidobí podpoříme nejen vysokou užitkovost a vysoký obsah tuku a bílkovin v mléce, ale udržíme i dobrý zdravotní stav dojnic (Doležal a kol., 2009).
4 WELFARE DOJNIC

Welfare (pohoda) zvířat je v dnešní době velmi diskutovaným tématem, nejen mezi odborníky, ale i mezi laickou veřejností, kdy veřejnost už není lhostejná k podmínkám zvířat chovaných pro produkční účely a vytváří tlak na chovatele i zákonodáře. Vysoké užitkovosti dosahují zvířata s dobrou welfare, protože mohou v odpovídajících podmínkách naplno využít svůj genetický potenciál.

Při hodnocení pohody zvířat můžeme využít čtyři základní přístupy, ať už samostatně nebo vzájemně propojené.

1) Produkční ukazatele - pokud žijí zvířata ve vhodných podmínkách a mají vysokou užitkovost, musí být i jejich pohoda na dobré úrovni.

2) Zdraví a nemoci - pokud je zvíře nemocné, jeho pohoda je značně narušena.

3) Fyziologické ukazatele – změny v parametrech vnitřního prostředí, tj. biochemických, hematologických, včetně všech výsledků klinického vyšetření, poukazují na působení stresorů (např. nedostatky nebo změny v technologických systémech, změny v prostředí).

4) Chování – změny v prostředí vedou ke změnám v chování zvířat, které můžou při špatných podmínkách vést až k nežádoucímu chování (Havlíček, 2009).

Významným bioklimatologickým faktorem je teplota vzduchu, která ovlivňuje objem přijatého krmiva, konverzi živin, užitkovost, reprodukční vlastnosti i celkový zdravotní stav zvířat. Termoneutrální zóna je ohraničena spodní a horní kritickou teplotou a udává rozpětí teplot pro zvíře přijatelné, kdy nemusí vydávat příliš mnoho energie na ochlazování organismu nebo naopak na udržení teploty tělesného jádra. Nejvyšší užitkovost mají zvířata, která se nacházejí v teplotách uprostřed mezi hraničními hodnotami. Pro skot je termoneutrální zóna mezi -5 a 20°C, přičemž záleží na dosahované užitkovosti zvířat a jejich celkovém zdravotním stavu i na dalších parametrech, jako je relativní vlhkost nebo proudění vzduchu.

Dříve ve stájích často docházelo k příliš vysoké relativní vlhkosti vzduchu, tj. nad 85 %. Vysokou hodnotu relativní vlhkosti způsobuje voda, kterou dojnice vydechují. Ve starých stájích, které byly nedostatečně tepelně izolované, pak docházelo
při překročení 85 % relativní vlhkosti vzduchu ke kondenzaci par a následnému provlhání stěn a stropů, což zhoršilo tepelnou bilanci stáje. Je nutné zajistit ve stájích dostatečné proudění vzduchu a odvod nadbytečné vlhkosti ze stáje (Havlíček, 2009).

Proudění vzduchu využíváme za vysokých teplot, kdy podporujeme ochlazování zvířat. Za nízkých teplot může při přílišném proudění vzduchu docházet k podchlazení organizmu. V praxi se setkáváme s různými typy stájí, z nichž často starší stáje nezajistí vyhovující výměnu vzduchu pro dojnice. V současnosti se doporučuje dodržení kubatury 6 m³ na 100 kg živé váhy. Pokud se nedodrží tato podmínka, může snadno dojít k nekontrolovatelnému zvyšování teploty ve stáji (Havlíček, 2009).

Moderní stáje pro dojnice jsou nezateplené budovy, s hřebenovou štěrbinou zajišťující proudění vzduchu, odvod škodlivých plynů a přebytečné vlhkosti. Vnější stěny budov jsou otevřené, zajišťující dostatečné proudění vzduchu, vybavené stahovacími roletami (Havlíček, 2009).

5 USTÁJENÍ DOJNIC

Systém ustájení dojnic patří k dalším klíčovým faktorům při produkci mléka. V posledních letech došlo k výrazné změně v ustájení dojnic, a to k přechodu od vazného k volnému ustájení, nejčastěji boxovému. Ustájení můžeme dále dělit na bezstelivové a stelivové. Dnes se nejvíce využívá stelivového způsobu, kdy se boxy stelou slámovou. Je potřeba při zařizování a udržování stáje věnovat pozornost volbě podlahové krytiny v místech určených pro lehání krav, protože při volbě nevhodného materiálu podlahy může docházet k tvorbě otlaků a jiných poranění (často i k poranění vemene dojnic) s následnou infekcí. Stále dochází k výzkumu a vývoji nových technologií a techniky pro ustájení dojnic, takže je možné, že v brzké době dojde k dalším změnám a pokrokům v ustájení.

Stelivové a bezstelivové ustájení

Stelivové způsoby ustájení využívají jako podestýlkové materiály nejčastěji slámu a kejdivy separat, dále piliny, hobliny papírový recyklát nebo písek. To, jaké použijeme stelivo, neovlivní jen samotné chovné prostředí pro zvířata, ale i kvalitu chlévské mrvy (ze slaměné podestýlky je dobré hnojivo, navíc kvalitní sláma může sloužit k dodání strukturální vlákniny, na druhou stranu zvyšuje prašnost prostředí, písek zase v létě dobře ochlazuje, ale zároveň zhoršuje problém zapískování zemědělských půd) (Staněk, 2015).

Výhody stelivových systémů jsou ve vyšším komfortu ležících zvířat, kdy nedochází k otlakům nebo poraněním končetin, dále v nižší investiční náročnosti, v produkci kvalitní mrvy a v čistotě ustájených zvířat. Mezi nevýhody řadíme závislost na produkci steliva, prašnost při nastýlání, vyšší pracnost a nutnost vybudování skladowacích prostorů (Staněk, 2015).

Bezstelivové systémy se dělí podle toho, jestli je kejda vyhrnována po plných podlahách, nebo jestli je podlaha s rošty. Nejčastěji se využívá společně s těmito systémy boxové ustájení s matrací. V nabídce jsou i boxy s rohožemi, které ale nejsou pro dojnice vhodné, protože jsou podle toho, způsobují dojnicím otlaky a poranění především hlezenních kloubů (Staněk, 2015).

Mezi výhody bezstelivového systému řadíme vyšší produktivitu práce (navíc odpadá manipulační práce s podestýlkou), čistotu zvířat (při použití roštů), vyšší
automatizace procesů. K nevýhodám řadíme problémy s plyny z kejdy, horší zdravotní stav končetin, a celkové vyšší nárůky na udržování dobré hygieny chovu (Staněk, 2015).

5.1 Ustájení vazné

Vazné ustájení dojnic může být stelivové (nejčastěji stlané slámom) i bezstelivové. Dojnice je uvázaná ve svém stání, takže je její pohyb velmi omezen. Nedostatkem pohybu dojnic docházelo ke zdravotním problémům s končetinami. Použití roštových podlah vede k nemocím paznehtů vlivem jejich nepřirozeného zatěžování. Krávy si navíc nemohou obroušovat rohovinu paznehtů pohybem, a proto se musí využít služeb paznehtáře, a tím se zvyšují náklady na produkcii. Dojení krav probíhá přímo ve stání. Tento způsob ustájení je málo efektivní, je potřeba více zaměstnanců pro ošetřování a dojení krav, takže je produktivita práce nízká. Welfare chovaných zvířat není dobrá. Zvířata nemají volný pohyb, nemohou sami pečovat o srst ani vytvářet sociální skupiny s ostatními zvířaty. Výhodou je individuální přístup ke kravám (např. při lečbě onemocnění nebo přidávání speciálních komponent ke krmné dávce). Dnes už se u nás tento způsob ustájení skoro nevyužívá a chovatelé přecházejí k ustájení volnému. Vazné ustájení má stále opodstatnění v drobnochovech, kde se však musí dbát na dodržení podmínek pro welfare chovaných zvířat, jako je minimální kubatura stáje 6 m³ na 100 kg živé váhy zvířat, dostatek světla, v případě možnosti i pohyb na pastvině nebo ve výběhu. Podmínkou v udržení dobré úrovně drobnochovu je každodenní péče o zvířata, posouzení zdravotního stavu a pravidelná péče o paznehty zvířat. Důležitá je i sjednaní časů pro chování zvířat, především v případě péče o býky (Staněk, 2015).

5.2 Ustájení volné

než u vázného. I welfare zvířat chovaných volně je na vyšší úrovni než u vázaných zvířat, zvířata mohou utvářet sociální skupiny (Staněk, 2015).

Boxové ustájení dojnic

Ve velkochovech dojnic se dnes nejvíce využívá boxového ustájení dojnic. Boxy bývají buď stlané, nejčastěji slámovou, nebo bezstelivové za použití matrací. Boxy pro dojnice musí být dostatečně velké a pohodlné, aby v nich dojnice rády ležely. Boxy by měli být minimálně 2,5 m dlouhé a 1,25 m široké. Pokud jsou boxy příliš malé nebo nepohodlné, zvířata budou mít otlaky, budou lehat na chodbách nebo budou v boxu ležet jen částí těla. V těchto případech je třeba problémy s boxy vyřešit, protože se nepohodlí zvířat podepisuje na jejich užitkovosti (Staněk, 2015).
6 NEJČASTĚJŠÍ ONEMOCNĚNÍ DOJNIC

Nejčastějšími onemocněními dojnic jsou nemoci končetin, mastitidy, ketózy a acidózy barchoru. Jakákoli nemoc způsobuje u dojnice snížení její pohody a nepříznivě se promítá i do produkce mléka. Nejen že dochází ke snížení produkce, ale dochází i k nižšímu příjmu krmiva a tím ke ztrátě tělesné kondice krav. V moderních chovech dojnic by se mělo velmi dbát na zdravotní stav zvířat a co nejlépe přizpůsobit prostředí a technologické procesy potřebám krav, aby se předešlo zbytečným ztrátám v důsledku nemocí, které nepředstavuje jenom úbytek nadoboveného mléka, ale i změny obsahů mléčných složek, náklady vynaložené na léčiva a speciální ošetřování krav nebo nemožnost dodat mléko od léčených krav zpracovatelům.

6.1 Nemoci končetin

Nemoci končetin a paznehtů jsou v poslední době poměrně diskutovaným tématem, protože se předpokládá, že zdraví končetin dojnic je podmínkou dobrého a ekonomicky výhodného chovu. Onemocnění končetin a paznehtů je pro dojnice bolestivé, dochází u nich k narušení welfare a ke snížení produkce. Projevem nemocí končetin je kulhání. Ve většině případů tvoří onemocnění končetin problémy s paznehty a s kůží, která na ně nasedá. Stupeň bolestivosti onemocnění se pak projeví ve snížené produkci mléka, kdy k poklesu produkce o 6 % dochází již u přerostlých paznehtů. Při vážnějších onemocněních se pak ztráty pohybují v rozmezí 15-50 %, a to už byl závažný problém celého chovu, který by mohl vést až k jeho likvidaci. Úbytek v produkci mléka závisí na produkčních vlastnostech dané dojnice, kdy u vysokoprodukční dojnice dojde k vyššímu úbytku produkce než u nízkoprodukční dojnice, a to jak absolutně, tak i relativně (Veselý, 2001).

Problémem u onemocnění končetin je celkový úbytek tělesné hmotnosti krav. Krávy více času leží, protože je pro ně chůze nebo stání bolestivější, nepřijmou dostatek krmiva, což vede k poklesu tělesné kondice. Navíc se u takto nemocných dojnic objevují poruchy plodnosti, a to se opět negativně projevuje na ekonomice chovu. Celkově zesílělé krávy jsou pak náchyné i k jiným nemocem, jako jsou mastitidy, záněty kloubů, proleženiny a otlaky. Onemocnění končetin patří k nejčastějším důvodům vyřazování krav z chovu, a to často těch vysokoužitkových. Chovatel pak musí uhradit další náklady na nákup nových zvířat. Při léčbě onemocnění končetin se mléko vyřazuje z dodávek do mlékárny. Tolerovaná výše kulhání u krav v chovech
s intenzivní produkci je 10 % a nahlíží se na ni jako na daň za vysokou užitkovost. V zemích s vysokou užitkovostí krav je často číslo ještě vyšší (14 ale i 20 %) (Veselý, 2001).

Zavedení takového systému ale není v dnešních podmínkách velkokapacitních kravínů a uzpůsobení budov pro ustájení dojnic snadné, přesto by se taková změna v delším časovém úseku projevila zvýšením úrovně našich chovů dojnic (Veselý, 2001).

Příčinou onemocnění paznehtů můžou být i jiná onemocnění, kdy např. acidóza bachoru může způsobit laminitidu (schvácení paznehtů), narušuje celkovou celistvost rohoviny paznehtu, nebo může způsobit osteoporózu, při které se tvoří výrůstky na kopytní kosti způsobující nehnisavý zánět škáry paznehtní. Při této změně metabolismu může dojít i k prošlápnutí spěnkou nebo rozšíření meziprstní štěrbiny. Složení krmné dávky dojnic ovlivňuje i kvalitu a rychlost růstu paznehtní rohoviny (Veselý, 2001).

6.2 Acidóza

postižených zvířat je nekoordinovaná, může dojít i k zánětu bachoru. Při acidóze se výrazně snižuje tučnost mléka (Staněk, 2015).

Lehčí forma acidózy se léčí dietou, kdy se krmí pouze seno. Do bachoru nemocné krávy se vpraví roztok jedlé sody a bachorové tekutiny od zdravé krávy. Používají se i antibiotika, která se aplikují do bachoru. V těžších formách acidózy jsou nutné výplachy bachoru, roztok jedlé sody se spolu s vápníkem píchá do žíly (při acidóze dochází k narušení metabolismu vápníku a fosforu, což může vést až k osteoporóze). Bachorová tekutina se dodá odl krávy, hydratace organismu se udržuje pomocí kapaček, antibiotika se podávají do bachoru. V těžších formách acidózy jsou nutné výplachy bachoru a roztok jedlé sody se spolu s vápníkem píchá do žíly (při acidóze dochází k narušení metabolismu vápníku a fosforu, což může vést až k osteoporóze). Následně se používají ochranná léčba jater, kdy se nitrožilně aplikuje aminokyseliny, vitamíny a glukóza, aby se předešlo poškození jater (Staněk, 2015).

Prevencí proti vzniku acidózy je pozvolný přechod na krmiva s vysokým obsahem lehce rozložitelných cukrů. Při vysokých dávkách těchto krmiv se podává menší množství jedlé sody pro neutralizaci bachorové pH hodnoty (Staněk, 2015).

6.3 Mastitida

Mastitida je zánět mléčné žlázy. Je to onemocnění, které má výrazný vliv na ekonomickou situaci v chovu dojených zvířat. Podobně jako jiná onemocnění se mastitidy negativně projeví v chovu náklady na léčiva a veterinární péči, dále náklady spojenými s předčasným vyřazením krav a nákupem nových zvířat nebo sníženou selekcí u jalovic, stejně jako ztrátami při zpeněžování mléka.

Rozlišuje se mastitida klinická a subklinická. Klinická forma mastitidy je typická svou rychlostí, rozsahem a změnami na mléčné žláze. Příznaky mastitidy jsou otok vemene, jeho zarudnutí a horkost (zvýšená teplota signalizuje zánět). Vemeno je na dotek velmi bolestivé. V mléce se mohou objevit i stopy krve. Dojnici se nasadí antibiotika. Přestože je to pro dojnici bolestivé, je nutné mléko stále oddílovat. Subklinická forma mastitidy je často neprojevuje typickými příznaky a má pomalý průběh. Subklinická forma bývá často pozůstatkem neléčené nebo špatně léčené klinické mastitidy. Subklinická mastitida se může odhalit díky pravidelným laboratorním rozborům mléka, kdy se zjišťuje počet somatických buněk (SB) v 1 ml mléka. Somatické buňky jsou bílé krvinky, které se nacházejí ve zvýšených počtech v místech, ve kterých dochází k infekci. Počet SB zdravého mléka by se měl pohybovat
v hodnotách okolo 100 000 SB na 1 ml mléka. Za nemocné zvíře se považuje takové, u kterého hodnota SB přesáhla 400 000 v 1 ml mléka. Krávy velmi nemocné, s hodnotou nad 1 000 000 SB v 1 ml (miliónárky), už není výhodné léčit a dochází k jejich vyřazení z chovu (Staněk, 2015).

K infekci mléčné žlázy dochází z mnoha důvodů, např. poraněním kůže vemene, přenosem infekce od jiné krávy, nedostatečným uzavíráním strukového kanálu, vlivem stresu (psychického i teplotního), špatné hygieny chovu nebo dojení. Mastitidy způsobené vlivem prostředí jsou způsobeny nejčastěji bakterií Escherichia Coli, která se vyskytuje ve výkalech. E. coli způsobuje většinou klinickou formu mastitidy. Mastitidy vzniklé z dojení jsou ve většině případů chybou pracovníka, který nedostatečně dbá na hygienu dojení (Staněk, 2015).

Hlavním pilířem prevence mastitid je hygiena celého chovu. Ustájení dojnic se musí udržovat v čistotě a pravidelně se desinfikuje. Podestýlka nesmí být shnilá nebo plesnivá. Dopravní prostředky pracující s mrvou a podestýlkou musí být pravidelně čištěny (zároveň se podestýlka nesmí vozit stejnými stroji, jakými se vozí mrva). Hygiena dojení se musí zásadně dodržovat. Pracovník dojírny musí dodržovat osobní hygienu a v případě, že má záděry, musí vždy používat jednorázové gumové rukavice. Struky se čistí desinfekčními ubrousky, kdy se použije jeden ubrousek na jednu dojnici. Do procesu dojení by pracovník neměl zbytečně zasahovat, vhodné je použití automatického snímače dojícího zařízení. Po dojení se struky vydesinfikují roztokem. Celá místnost dojírny se musí udržovat v čistotě pravidelnými úklidy a desinfikováním (Staněk, 2015).

6.4 Ketóza

Ketóza je metabolická porucha, která vzniká jako důsledek negativní energetické bilance krav. Nejvíce ohrožené jsou vysokoužitkové dojnice v první fázi laktace. Mezi příčiny vzniku ketózy se řadí nedostatek energie v krmné dávce (především 2 měsíce po otelení), nadbytek dusíkatých látek, nedostatek fosforu, hořčíku, vápníku, vitamínu B_{12} a pohybu. Často se ketóza vyskytuje u krav s vysokou tělesnou kondicí při porodu. Vyšší počet ketóz je evidován u krav s vyšším číslem pořadí laktace. U dojnic je v první fázi laktace příjem energie výrazně nižší než výdej, čímž dochází k využívání tukových rezerv. V játrech se produkuje velké množství glukózy a v organismu se hromadí značné množství ketolátek (v krvi, moči, mléce), čímž dochází k problémům s tvorbou
mastných kyselín a k tukové degeneraci jater. V chovech se vyskytuje častěji subklinická forma ketózy než klinická. Ketóza významně ovlivňuje mlčenou užitkovost, reprodukční vlastnosti, snižuje imunitu, dochází k vyššímu vyřazování krav z chovu a k výrazným ekonomickým ztrátám (Staněk, 2015).

Ketóza se léčí použitím infuze glukózy, do krmné dávky se přidávají šroty nebo melasa, z prvků pak hořčík, vápník a fosfor. Nemocné krávě se dává bachorová tekutina od zdravé krávy (Staněk, 2015).

Ketóze se předchází optimalizací krmné dávky především v období před a po porodu. Dojnicím prospěje i dostatek pohybu. Krávy by se měli udržovat...
v optimální tělesné kondici. Důležitou součástí prevence jsou pak pravidelná vyšetření na obsah ketolátek (Bucek, 2007).

 Krávy s negativní energetickou bilancí mají sníženou obranyschopnost mléčné žlázy, proto se často společně s klinickou ketózou vyskytuje u dojnic i klinická mastitida. Subklinická a klinická ketóza jsou často spojeny s klinickou i subklinickou formou mastitidy. Ketóza má vliv i na produkční ukazatele. Uvádí se, že produkce mléka u krav s vysokou hladinou ketolátek byla nižší (až o 1,5 kg na den), snížil se i obsah bílkovin v mléku. Obsah tuku se ale naopak zvýšil v porovnání s mlékem od zdravých dojnic (Bucek, 2007).

6.5 Poporodní paréza

Paréza (ochrnutí) je onemocnění, které postihuje dojnice krátce po otelení. Překrmování krav vápníkem spolu s omezenou činností příštítné žlázy v době otelení způsobuje nedostatečné vstřebávání vápníku ze střeva a nedostatečné uvolňování vápníku ze skeletu. Těsně po otelení se velké množství vápníku využije při tvorbě mléka, čímž dojde k nedostatku vápníku v organismu a vzniku parézy (Staněk, 2015).

Příčinou parézy je překrmování krav vápníkem v období stání na sucho a nesprávný poměr vápníku a fosforu. Jako správný poměr se uvádí poměr 2:1, ale sestavení krmné dávky se musí řídit aktuální potřebou živin u zvířat, poměr se tedy liší podle výše užitkovosti. Paréze se předchází omezením příjmu vápníku z krmné dávky v období před porodem. Tím se docílí lepšího vstřebávání vápníku z krmení, organismus dojnice se připraví na nedostatek vápníku (Zelenka, 2013).

7 UKAZATELE JAKOSTI MLÉKA

Mezi hlavní ukazatele jakosti mléka se řadí celkový počet mikroorganismů, počet somatických buněk, rezidua inhibičních látek a bod mrznutí mléka. Dále se hodnotí mléko podle obsahu bílkovin, obsahu tuku, obsahu kaseinu, laktózy a podílu tukuprosté sušiny. Smyslové ukazatele jakosti jsou barva, konzistence, vzhled, chuť a vůně. Faktory, které ovlivňují ukazatele jakosti mléka, jsou stájové prostředí, genotyp zvířat, vliv člověka a výživa.

7.1 Celkový počet mikroorganismů

Celkový počet mikroorganismů (CPM) je jako faktor nejvíce ovlivněný ošetřovatelskou péči při získávání mléka. Pokud je hodnota CPM příliš vysoká, tak došlo k chybám jako například nedostatečná desinfekce struků, dojících a chladících zařízení, nedodržování hygieny pracovníků nebo chybné zacházení s dojícím aparátem. CPM se zjišťuje povinně u mléka určeného pro mlékárenské zpracování. Hranicí hodnota CPM je stanovena na 100 000 v 1 ml mléka.

7.2 Počet somatických buněk

Somatické buňky jsou buňky epitelů nebo bílé krvinky. Většinou se vyskytují v mléce v poměru 10 % buněk z epitelů a 90 % bílých krvínek. Vysoký počet somatických buněk (SB) v mléce značí zánětlivé procesy v mléčné žláze dojnice, tedy mastitidy. Počet SB je ovlivněn také pořadím a fází laktace, plemenem, výskytem metabolických onemocnění nebo stresem. Hranicí hodnota SB je 400 000 v 1 ml mléka.

7.3 Rezidua inhibičních látek

Rezidua inhibičních látek (RIL) jsou antibiotika a jejich pozůstatky nebo zbytky čisticích prostředků. Každé antibiotikum využívané pro léčbu dojnic má stanovenou ochrannou lhůtu, po kterou nesmí být mléko dodáváno do mlékární ke zpracování. V mléce určeného pro zpracování v mlékárnách se nesmí RIL objevit.

7.4 Bod mrznutí mléka

Bod mrznutí mléka (BM) uvádí zvodnění mléka. Normou stanovená hranice pro BM je -0,520 °C. Pokud by byla naměřená hodnota BM nad uvedenou hranicí, bylo by v mléce příliš mnoho vody (zemědělec by mohl být podezříván, že do mléka přimíchal vodu). V dnešní době se mléko nezpeněžuje jen podle množství, ale i podle
obsahu jednotlivých složek. To vede chovatele ke snaze zvyšovat obsah složek v mléku a udržovat BM pod stanovenou hranicí.

7.5 Obsah mléčných složek

Obsahy mléčných složek hrají roli při výkupu mléka do mlékáren, kdy už nedochází pouze ke zpeněžování kvantitativnímu (tedy za počet litrů), ale v ceně se zohledňuje i obsah tuku a bílkovin, který je důležitý pro další zpracování mléka. Proto je pro zemědělce nezbytné tuto skutečnost nepodceňovat a věnovat pozornost celkovému zlepšování chovu a zvyšování obsahu mléčných složek. Ne vždy totiž platí, že je maximální užitkovost nejekonomičtější (Anonym, 2007).

Obsah mléčných složek je ovlivněn mnoha faktory. Genetické předispozice ovlivňují obsah mléčných složek z 50 až 60 %. Proto je nutné se neustále věnovat šlechtění a zlepšovat genetickou vybavenost dojnic. Dalším výrazným faktorem je užitkovost dojnic. S rostoucí užitkovostí dochází k relativnímu poklesu obsahu tuku i bílkovin. Dalším faktorem je roční období, kdy v létě dochází k poklesu obsahu tuku i bílkovin v mléce. Prvním důvodem je nejvyšší produkce mléka dojnicemi koncem jara a začátkem léta a druhým důvodem je působení tepelného stresu v letních měsících. Vliv nejen na obsahy složek ale i na celkovou produkcí má četnost dojení. Při dojení třikrát denně proti dvakrát denně dochází ke zvýšení objemu nadojeného mléka (cca o 3,5 kg mléka na kus a den), na druhou stranu dojde k poklesu tuku (průměrně o 0,15 %) a bílkovin (průměrně o 0,05 %). Častější dojení a tím zvyšená produkce může mít i negativní dopady na dojnice jako zhoršení reprodukčních vlastností a zvýšený výskyt onemocnění končetin. Významným faktorem je i výživa dojnic. Při stanovení vlivu výživy na produkci mléka se postupuje individuálně v rámci jednotlivých chovů.

Stanovuje se poměr mezi mléčným tukem a bílkovinami v nadojeném mléce. Normální poměr bílkoviny a tuku v mléce je 0,85 až 0,87, kdy hodnoty pod 0,8 mohou signalizovat nedostatek energie a hodnoty nad 0,9 mohou být spojeny s výskytem subklinické acidózy bachoru. Při upravování krmné dávkové se musí dávat pozor na to, aby změna krmné dávky měla požadovaný výsledek ve zvýšení obsahu složek.

V opačném případě by pak nebyla investice do zlepšení krmné dávky pro chovatele výhodná (Anonym, 2007).
7.6 Nákup a zpeněžování mléka

Kvalitativní požadavky na mléko jsou uvedeny v ČSN 57 05 29 z roku 1993. V mléce musí být obsah tuku nejméně 33 g v 1 litru mléka, obsah bílkovin nejméně 28 g v 1 litru, obsah tukuprosté sušiny nejméně 8,5 % hmotnosti (Falta, Chládek, 2015).

Mléko se po nadojení chladí na 8 °C při denním svozu nebo na 6 °C v případě, že svoz mléka neprobíhá každý den. Přepravu mléka zajišťuje mlékárna, u nás nejčastěji probíhá svoz mléka denně v automobilových cisternách. Z dodávek do mlékárny je vyřazeno mléko, které má vyšší hodnoty CPM a SB, než jsou povolené, dále mléko z prvních střiků, s obsahem RIH, s bodem mrznutí nad stanovenou hranicí nebo mléko smyslově znehodnocené. Výkup mléka se řídí smlouvou uzavřenou mezi mlékárnou a zemědělcem. Mlékárny často připlácejí za určité jakostní parametry, např. výrobci sýrů připlatí za vyšší obsah bílkovin v mléce. Nejen množství, ale i obsah mléčných složek a hodnoty jakostních ukazatelů ovlivňují výslednou cenu, kterou mlékárna zemědělcům vyplatí. Mléko se podle parametrů řadí do dvou jakostních skupin, a to do skupiny Q a do skupiny I. jakost. Ukazatele jakosti jsou pravidelně zjišťovány v laboratořích dvakrát měsíčně, BM se zjišťuje jednou měsíčně. Do tříd jakosti Q a I. jakost je zařazeno 96,5 % mléka vyprodukovaného v ČR. Celková cena mléka je ale ovlivněna i mnoha jinými faktory, které české producenci nemohou ani ovlivnit. Produkce mléka v ČR je světově velmi málo významná, neboť česká produkce je jen 0,4 % světové a 1,7 % evropské produkce. Cena mléka v ČR je tedy závislá na vývoji ceny na mezinárodním trhu (Ježková, 2015).

Tabulka 1 Třídy kvality mléka

<table>
<thead>
<tr>
<th>Ukazatel</th>
<th>Standard</th>
<th>Nestandard</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q</td>
<td>I</td>
<td></td>
</tr>
<tr>
<td>SB</td>
<td>do 300 000</td>
<td>do 400 000</td>
</tr>
<tr>
<td>CPM</td>
<td>do 50 000</td>
<td>do 100 000</td>
</tr>
</tbody>
</table>

Zdroj: Chov skotu
8 SOUČASNÁ SITUACE NA TRHU S MLÉKEM

V následující kapitole jsem se zaměřila na současný stav a na vývoj situace na tuzemském i evropském trhu s mlékem. Domácí produkce mléka je porovnaná s produkci ostatních evropských zemí. Důraz je kladen na rozdíly mezi naší produkci a produkci našich největších konkurentů.

8.1 Stavy skotu v ČR

mléčné krize, kdy výkupní ceny mléka spadly až pod hranici 6 Kč za litr. Produkce mléka byla pro chovatele ztrátová, výkupní cena mléka byla nižší než náklady na jeho výrobu. Mírně klesající trend posledních deset let je způsoben zvyšující se užitkovostí dojnic.

Graf 1 Stavy skotu od roku 1985 do roku 2013
Zdroj: Vlastní s využitím dat ČSÚ

Graf 2 Vývoj stavů dojných krav v ČR
Zdroj: SZIF

Z dnešního pohledu se na centrálně plánované ekonomiky diváme poměrně kriticky. Dodržování centrálního plánu a pokřivený daňový systém mají vliv na celkové fungování ekonomiky. Při centrálním plánování nedochází ke stanovení rovnováhy
na trhu pomocí střetu nabídky a poptávky a tím k určení ceny a výroběného množství produktu, ale cena na trhu je stanovená. Například záporná daň z obratu nejen zabraňovala utváření cen na trhu střetem nabídky s poptávkou, ale udržovala stanovenou cenu bez ohledu na tržní mechanismus. Zemědělci nebyli tlačeni k zefektivňování výroby, docházelo k plýtvání zdrojů. Tyto problémy by mělo řešit tržní hospodářství, kdy se zdroje v ekonomice rozdělí výrobci, kteří jsou schopni vyrábět nejefektivněji a tím nabízet svoje produkty za nižší cenu než konkurence, neboť právě oni budou mít na trhu odbyt. Po otevření hranic a začlenění naší země do celosvětového obchodu byla neefektivnost naší výroby jedním z hlavních problémů, protože pro tuzemské producenty bylo těžké se vyrovnat se zahraniční konkurencí a získat stabilní postavení na místních i zahraničních trzích.

8.2 Obsah mléčných složek

V následujících dvou tabulkách je porovnaná změna obsahu mléčného tuku a mléčných bílkovin od roku 2005 do roku 2013 (2014 v případě Rakouska). Obsahy mléčných složek jsou uvedeny podle údajů z vybraných zemí. Z tabulek 2 a 3 je patrné, že v ČR se obsah tuku i bílkovin drží přibližně na stejné úrovni. V porovnání s jedním z našich největších konkurentů na trhu s mlékem, s Německem, se dá předpokládat, že se domácí chov dojnic má ještě v čem zlepšovat (v Německu jsou průměrné hodnoty obsahu tuků i bílkovin značně vyšší než u nás). Grafy 3 a 4 k tabulkám 2 a 3 znázorňují porovnání s nejdůležitějšími konkurenty tuzemského trhu s mlékem a mléčnými produkty, Německem a Polskem. Navíc je v grafech 3 a 4 znázorněno i Nizozemí, neboť hodnoty obsahů mléčných složek jsou v Nizozemí výrazně vyšší než u nás. Grafy 3 a 4 k tabulkám 2 a 3 znázorňují porovnání s nejdůležitějšími konkurenty tuzemského trhu s mlékem a mléčnými produkty, Německem a Polskem. Navíc je v grafech 3 a 4 znázorněno i Nizozemí, neboť hodnoty obsahů mléčných složek jsou v Nizozemí výrazně vyšší než u nás. Grafy 3 a 4 k tabulkám 2 a 3 znázorňují porovnání s nejdůležitějšími konkurenty tuzemského trhu s mlékem a mléčnými produkty, Německem a Polskem. Navíc je v grafech 3 a 4 znázorněno i Nizozemí, neboť hodnoty obsahů mléčných složek jsou v Nizozemí výrazně vyšší než u nás. Grafy 3 a 4 k tabulkám 2 a 3 znázorňují porovnání s nejdůležitějšími konkurenty tuzemského trhu s mlékem a mléčnými produkty, Německem a Polskem. Navíc je v grafech 3 a 4 znázorněno i Nizozemí, neboť hodnoty obsahů mléčných složek jsou v Nizozemí výrazně vyšší než u nás. Grafy 3 a 4 k tabulkám 2 a 3 znázorňují porovnání s nejdůležitějšími konkurenty tuzemského trhu s mlékem a mléčnými produkty, Německem a Polskem. Navíc je v grafech 3 a 4 znázorněno i Nizozemí, neboť hodnoty obsahů mléčných složek jsou v Nizozemí výrazně vyšší než u nás. Grafy 3 a 4 k tabulkám 2 a 3 znázorňují porovnání s nejdůležitějšími konkurenty tuzemského trhu s mlékem a mléčnými produkty, Německem a Polskem. Navíc je v grafech 3 a 4 znázorněno i Nizozemí, neboť hodnoty obsahů mléčných složek jsou v Nizozemí výrazně vyšší než u nás.
Tabulka 2 Obsah mléčného tuku v kravském mléce (v %)

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>European Union (28 countries)</td>
<td>-</td>
<td>-</td>
<td>4,04</td>
<td>4,04</td>
<td>4,04</td>
<td>4,05</td>
<td>4,03</td>
<td>4,04</td>
<td>4,04</td>
<td>:</td>
</tr>
<tr>
<td>Belgium</td>
<td>4,09</td>
<td>4,10</td>
<td>4,07</td>
<td>4,09</td>
<td>4,09</td>
<td>4,10</td>
<td>4,07</td>
<td>4,10</td>
<td>4,09</td>
<td>:</td>
</tr>
<tr>
<td>Czech Republic</td>
<td>3,80</td>
<td>3,80</td>
<td>3,78</td>
<td>3,86</td>
<td>3,75</td>
<td>3,76</td>
<td>3,78</td>
<td>3,83</td>
<td>3,87</td>
<td>:</td>
</tr>
<tr>
<td>Denmark</td>
<td>4,30</td>
<td>4,30</td>
<td>4,26</td>
<td>4,30</td>
<td>4,31</td>
<td>4,30</td>
<td>4,27</td>
<td>4,28</td>
<td>4,26</td>
<td>:</td>
</tr>
<tr>
<td>Germany (until 1990 former territory of the FRG)</td>
<td>4,17</td>
<td>4,16</td>
<td>4,16</td>
<td>4,14</td>
<td>4,15</td>
<td>4,16</td>
<td>4,13</td>
<td>4,13</td>
<td>4,12</td>
<td>:</td>
</tr>
<tr>
<td>Ireland</td>
<td>3,77</td>
<td>3,75</td>
<td>3,79</td>
<td>3,82</td>
<td>3,83</td>
<td>3,85</td>
<td>3,89</td>
<td>3,94</td>
<td>3,94</td>
<td>:</td>
</tr>
<tr>
<td>Greece</td>
<td>3,71</td>
<td>3,75</td>
<td>3,87</td>
<td>3,84</td>
<td>3,90</td>
<td>3,92</td>
<td>3,95</td>
<td>3,95</td>
<td>3,93</td>
<td>:</td>
</tr>
<tr>
<td>Spain</td>
<td>3,75</td>
<td>3,74</td>
<td>3,72</td>
<td>3,71</td>
<td>3,68</td>
<td>3,71</td>
<td>3,64</td>
<td>3,62</td>
<td>3,62</td>
<td>:</td>
</tr>
<tr>
<td>France</td>
<td>4,06</td>
<td>4,05</td>
<td>4,03</td>
<td>4,03</td>
<td>4,02</td>
<td>4,04</td>
<td>4,00</td>
<td>3,98</td>
<td>3,99</td>
<td>:</td>
</tr>
<tr>
<td>Italy</td>
<td>3,71</td>
<td>3,69</td>
<td>3,71</td>
<td>3,72</td>
<td>3,74</td>
<td>3,75</td>
<td>3,73</td>
<td>3,78</td>
<td>3,78</td>
<td>:</td>
</tr>
<tr>
<td>Netherlands</td>
<td>4,40</td>
<td>4,40</td>
<td>4,38</td>
<td>4,37</td>
<td>4,36</td>
<td>4,42</td>
<td>4,40</td>
<td>4,40</td>
<td>4,40</td>
<td>:</td>
</tr>
<tr>
<td>Austria</td>
<td>4,20</td>
<td>4,19</td>
<td>4,21</td>
<td>4,19</td>
<td>4,19</td>
<td>4,20</td>
<td>4,20</td>
<td>4,20</td>
<td>4,19</td>
<td>4,19</td>
</tr>
<tr>
<td>Poland</td>
<td>3,98</td>
<td>3,92</td>
<td>3,95</td>
<td>3,92</td>
<td>3,97</td>
<td>4,02</td>
<td>3,98</td>
<td>4,00</td>
<td>3,98</td>
<td>:</td>
</tr>
<tr>
<td>Portugal</td>
<td>3,85</td>
<td>3,84</td>
<td>3,85</td>
<td>3,86</td>
<td>3,83</td>
<td>3,80</td>
<td>3,78</td>
<td>3,78</td>
<td>3,79</td>
<td>:</td>
</tr>
<tr>
<td>Slovakia</td>
<td>3,76</td>
<td>3,72</td>
<td>3,77</td>
<td>3,76</td>
<td>3,73</td>
<td>3,80</td>
<td>3,79</td>
<td>3,78</td>
<td>3,84</td>
<td>:</td>
</tr>
<tr>
<td>Finland</td>
<td>4,16</td>
<td>4,16</td>
<td>4,18</td>
<td>4,21</td>
<td>4,21</td>
<td>4,26</td>
<td>4,27</td>
<td>4,27</td>
<td>4,28</td>
<td>:</td>
</tr>
<tr>
<td>Sweden</td>
<td>4,25</td>
<td>4,22</td>
<td>4,23</td>
<td>4,20</td>
<td>4,24</td>
<td>4,23</td>
<td>4,20</td>
<td>4,22</td>
<td>4,26</td>
<td>:</td>
</tr>
<tr>
<td>United Kingdom</td>
<td>4,02</td>
<td>4,04</td>
<td>4,05</td>
<td>4,06</td>
<td>4,00</td>
<td>3,96</td>
<td>4,04</td>
<td>4,07</td>
<td>4,03</td>
<td>:</td>
</tr>
<tr>
<td>Switzerland</td>
<td>-</td>
<td>-</td>
<td>4,00</td>
<td>4,00</td>
<td>:</td>
<td>:</td>
<td>3,99</td>
<td>4,00</td>
<td>4,00</td>
<td>:</td>
</tr>
</tbody>
</table>

Zdroj: Vlastní s využitím databáze Eurostat

Graf 3 Obsah tuku v kravském mléce v %

Zdroj: Vlastní s využitím databáze Eurostat
Tabulka 3 Obsah mléčných bílkovin v kravském mléce (v %)

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>European Union (28 countries)</td>
<td>:</td>
<td>:</td>
<td>3,36</td>
<td>3,36</td>
<td>3,36</td>
<td>3,38</td>
<td>3,37</td>
<td>3,37</td>
<td>3,37</td>
<td>:</td>
</tr>
<tr>
<td>Belgium</td>
<td>3,17</td>
<td>3,35</td>
<td>3,39</td>
<td>3,39</td>
<td>3,35</td>
<td>3,39</td>
<td>3,38</td>
<td>3,40</td>
<td>3,40</td>
<td>:</td>
</tr>
<tr>
<td>Czech Republic</td>
<td>3,38</td>
<td>3,35</td>
<td>3,37</td>
<td>3,35</td>
<td>3,36</td>
<td>3,37</td>
<td>3,38</td>
<td>3,38</td>
<td>3,36</td>
<td>:</td>
</tr>
<tr>
<td>Denmark</td>
<td>3,42</td>
<td>3,41</td>
<td>3,42</td>
<td>3,41</td>
<td>3,44</td>
<td>3,45</td>
<td>3,46</td>
<td>3,42</td>
<td>3,52</td>
<td>:</td>
</tr>
<tr>
<td>Germany (until 1990 former territory of the FRG)</td>
<td>3,42</td>
<td>3,40</td>
<td>3,43</td>
<td>3,41</td>
<td>3,42</td>
<td>3,42</td>
<td>3,41</td>
<td>3,41</td>
<td>3,41</td>
<td>:</td>
</tr>
<tr>
<td>Ireland</td>
<td>3,30</td>
<td>3,30</td>
<td>3,32</td>
<td>3,34</td>
<td>3,33</td>
<td>3,37</td>
<td>3,37</td>
<td>3,36</td>
<td>3,39</td>
<td>:</td>
</tr>
<tr>
<td>Greece</td>
<td>3,00</td>
<td>2,96</td>
<td>3,30</td>
<td>3,30</td>
<td>3,29</td>
<td>3,30</td>
<td>3,29</td>
<td>3,31</td>
<td>3,30</td>
<td>:</td>
</tr>
<tr>
<td>Spain</td>
<td>3,17</td>
<td>3,18</td>
<td>3,19</td>
<td>3,18</td>
<td>3,18</td>
<td>3,24</td>
<td>3,24</td>
<td>3,26</td>
<td>3,28</td>
<td>:</td>
</tr>
<tr>
<td>France</td>
<td>3,40</td>
<td>3,39</td>
<td>3,40</td>
<td>3,40</td>
<td>3,38</td>
<td>3,42</td>
<td>3,41</td>
<td>3,41</td>
<td>3,38</td>
<td>:</td>
</tr>
<tr>
<td>Italy</td>
<td>3,30</td>
<td>3,30</td>
<td>3,31</td>
<td>3,34</td>
<td>3,36</td>
<td>3,37</td>
<td>3,36</td>
<td>3,38</td>
<td>3,37</td>
<td>:</td>
</tr>
<tr>
<td>Netherlands</td>
<td>3,49</td>
<td>3,49</td>
<td>3,50</td>
<td>3,50</td>
<td>3,50</td>
<td>3,53</td>
<td>3,51</td>
<td>3,53</td>
<td>3,53</td>
<td>:</td>
</tr>
<tr>
<td>Austria</td>
<td>3,39</td>
<td>3,37</td>
<td>3,40</td>
<td>3,39</td>
<td>3,37</td>
<td>3,40</td>
<td>3,39</td>
<td>3,39</td>
<td>3,40</td>
<td>3,40</td>
</tr>
<tr>
<td>Poland</td>
<td>3,20</td>
<td>3,10</td>
<td>3,11</td>
<td>3,21</td>
<td>3,20</td>
<td>3,21</td>
<td>3,19</td>
<td>3,22</td>
<td>3,21</td>
<td>:</td>
</tr>
<tr>
<td>Portugal</td>
<td>3,28</td>
<td>3,25</td>
<td>3,28</td>
<td>3,27</td>
<td>3,28</td>
<td>3,28</td>
<td>3,26</td>
<td>3,25</td>
<td>3,26</td>
<td>:</td>
</tr>
<tr>
<td>Slovakia</td>
<td>3,32</td>
<td>3,29</td>
<td>3,30</td>
<td>3,31</td>
<td>3,33</td>
<td>3,34</td>
<td>3,35</td>
<td>3,37</td>
<td>3,36</td>
<td>:</td>
</tr>
<tr>
<td>Finland</td>
<td>3,39</td>
<td>3,42</td>
<td>3,46</td>
<td>3,43</td>
<td>3,45</td>
<td>3,48</td>
<td>3,46</td>
<td>3,48</td>
<td>3,45</td>
<td>:</td>
</tr>
<tr>
<td>Sweden</td>
<td>3,38</td>
<td>3,38</td>
<td>3,40</td>
<td>3,38</td>
<td>3,40</td>
<td>3,41</td>
<td>3,41</td>
<td>3,42</td>
<td>3,42</td>
<td>:</td>
</tr>
<tr>
<td>United Kingdom</td>
<td>3,27</td>
<td>3,27</td>
<td>3,31</td>
<td>3,28</td>
<td>3,27</td>
<td>3,28</td>
<td>3,27</td>
<td>3,26</td>
<td>3,26</td>
<td>:</td>
</tr>
</tbody>
</table>

Zdroj: Vlastní s využitím databáze Eurostat

Graf 4 Obsah mléčných bílkovin v %

Zdroj: Vlastní s využitím databáze Eurostat
8.3 Vývoj užitkovosti dojnic

![Graf 5 Průměrná užitkovost jedné dojnice v kg](image)

Zdroj: Vlastní s využitím dat ČSÚ

8.4 Produkce mléka v ČR

Produkce mléka nejen v ČR ale i v celé EU byla až do letošního dubna omezena stanovenými kvótiemi. Produkce mléka se u nás pohybovala každý rok kolem 2,8 miliardy kg. V únoru 2015 vyprodukovali zemědělci v ČR 226 291,6 tuny mléka, což je zhruba 90 % stanovené kvóty (Hrdličková, Mikulka, 2015). Z tabulky 4 i z grafu 6 je patrné, že zatímco se naše produkce drží stále na stejných hodnotách, tak produkce Německa, Polska, Nizozemí a Rakouska se v posledních letech začala zvyšovat.
V případě Německa se produkce zvýšila jen v letech 2010-2013 o 1 730 tis. tun mléka. Tyto státy se už dlouhodobě připravují na zrušení mléčných kvót a chtějí získat ihned po zrušení kvót pomocí nadprodukce dobré postavení na trhu.

Tabulka 4 Roční produkce mléka ve vybraných zemích v tisících tun

<table>
<thead>
<tr>
<th>GEO/TIME</th>
<th>2008</th>
<th>2009</th>
<th>2010</th>
<th>2011</th>
<th>2012</th>
<th>2013</th>
</tr>
</thead>
<tbody>
<tr>
<td>European Union (28 countries)</td>
<td>149 336,1</td>
<td>:</td>
<td>:</td>
<td>:</td>
<td>153 172,2</td>
<td>796,41</td>
</tr>
<tr>
<td>Belgium</td>
<td>2 892</td>
<td>2 996</td>
<td>3 111</td>
<td>3 151</td>
<td>3 116</td>
<td>3 528</td>
</tr>
<tr>
<td>Czech Republic</td>
<td>2 801,32</td>
<td>2 780,66</td>
<td>2 682,52</td>
<td>2 735,93</td>
<td>2 814,68</td>
<td>2 849,43</td>
</tr>
<tr>
<td>Denmark</td>
<td>4 656</td>
<td>4 813,8</td>
<td>4 910</td>
<td>4 879,5</td>
<td>4 915,7</td>
<td>5 081,8</td>
</tr>
<tr>
<td>Germany (until 1990 former territory of the FRG)</td>
<td>28 656,26</td>
<td>29 198,68</td>
<td>29 593,88</td>
<td>30 301,36</td>
<td>30 672,15</td>
<td>31 324,24</td>
</tr>
<tr>
<td>Ireland</td>
<td>5 113,7</td>
<td>4 966,9</td>
<td>5 349,7</td>
<td>5 556,2</td>
<td>5 399,3</td>
<td>5 600,7</td>
</tr>
<tr>
<td>Greece</td>
<td>787,2</td>
<td>752,8</td>
<td>743,66</td>
<td>757</td>
<td>765,5</td>
<td>730,6</td>
</tr>
<tr>
<td>Spain</td>
<td>6 339,9</td>
<td>6 251,45</td>
<td>6 357,14</td>
<td>6 487,68</td>
<td>6 502,41</td>
<td>6 559,18</td>
</tr>
<tr>
<td>France</td>
<td>24 271,81</td>
<td>23 332,68</td>
<td>24 032,48</td>
<td>25 091,93</td>
<td>24 718,38</td>
<td>24 425,79</td>
</tr>
<tr>
<td>Italy</td>
<td>11 285,91</td>
<td>11 364,17</td>
<td>11 399,44</td>
<td>11 298,61</td>
<td>11 500</td>
<td>11 281,26</td>
</tr>
<tr>
<td>Hungary</td>
<td>1 840,49</td>
<td>1 758,22</td>
<td>1 684,92</td>
<td>1 712,48</td>
<td>1 812,85</td>
<td>1 772,76</td>
</tr>
<tr>
<td>Netherlands</td>
<td>11 620,46</td>
<td>11 791,36</td>
<td>11 940,52</td>
<td>11 850,72</td>
<td>11 880,95</td>
<td>12 407,69</td>
</tr>
<tr>
<td>Austria</td>
<td>3 195,9</td>
<td>3 229,8</td>
<td>3 257,7</td>
<td>3 307,13</td>
<td>3 382,1</td>
<td>3 393,06</td>
</tr>
<tr>
<td>Poland</td>
<td>12 425</td>
<td>12 447</td>
<td>12 279</td>
<td>12 414</td>
<td>12 668</td>
<td>12 718</td>
</tr>
<tr>
<td>Portugal</td>
<td>2 021,69</td>
<td>1 998,74</td>
<td>1 918,25</td>
<td>1 918,52</td>
<td>1 938,13</td>
<td>1 847,98</td>
</tr>
<tr>
<td>Slovakia</td>
<td>1 057,3</td>
<td>957,3</td>
<td>918</td>
<td>928,32</td>
<td>959,4</td>
<td>933,9</td>
</tr>
<tr>
<td>United Kingdom</td>
<td>13 722,11</td>
<td>13 596</td>
<td>13 960</td>
<td>14 088</td>
<td>13 857</td>
<td>13 943</td>
</tr>
</tbody>
</table>

Zdroj: Vlastní s využitím databáze Eurostat
8.5 Ceny mléka

Tabulka 5 Průměrné roční ceny mléka vyplácené mlékárnami v letech 2001 až 2014 v Kč za litr

<table>
<thead>
<tr>
<th>rok</th>
<th>cena za 1 l</th>
</tr>
</thead>
<tbody>
<tr>
<td>2001</td>
<td>7,81</td>
</tr>
<tr>
<td>2002</td>
<td>8,12</td>
</tr>
<tr>
<td>2003</td>
<td>7,79</td>
</tr>
<tr>
<td>2004</td>
<td>8,06</td>
</tr>
<tr>
<td>2005</td>
<td>8,28</td>
</tr>
<tr>
<td>2006</td>
<td>7,81</td>
</tr>
<tr>
<td>2007</td>
<td>8,38</td>
</tr>
<tr>
<td>2008</td>
<td>7,13</td>
</tr>
<tr>
<td>2009</td>
<td>6,14</td>
</tr>
<tr>
<td>2010</td>
<td>7,43</td>
</tr>
<tr>
<td>2011</td>
<td>8,26</td>
</tr>
<tr>
<td>2012</td>
<td>7,66</td>
</tr>
<tr>
<td>2013</td>
<td>8,51</td>
</tr>
<tr>
<td>2014</td>
<td>9,36</td>
</tr>
</tbody>
</table>

Zdroj: Vlastní s využitím dat SZIF

Graf 7 Průměrná cena mléka v Kč za litr při výkupu do mlékáren
Zdroj: Vlastní s využitím dat SZIF
Tabulka 6 Ceny mléka vyplácené mlékárnami v Kč za litr

<table>
<thead>
<tr>
<th>rok/měsíc</th>
<th>I.</th>
<th>II.</th>
<th>III.</th>
<th>IV.</th>
<th>V.</th>
<th>VI.</th>
<th>VII.</th>
<th>VIII.</th>
<th>IX.</th>
<th>X.</th>
<th>XI.</th>
<th>XII.</th>
</tr>
</thead>
<tbody>
<tr>
<td>2001</td>
<td>7,67</td>
<td>7,70</td>
<td>7,69</td>
<td>7,73</td>
<td>7,75</td>
<td>7,75</td>
<td>7,74</td>
<td>7,73</td>
<td>7,81</td>
<td>7,95</td>
<td>8,07</td>
<td>8,13</td>
</tr>
<tr>
<td>2002</td>
<td>8,25</td>
<td>8,23</td>
<td>8,22</td>
<td>8,20</td>
<td>8,15</td>
<td>8,08</td>
<td>8,04</td>
<td>8,01</td>
<td>8,04</td>
<td>8,05</td>
<td>8,08</td>
<td>8,08</td>
</tr>
<tr>
<td>2003</td>
<td>8,02</td>
<td>7,99</td>
<td>7,93</td>
<td>7,82</td>
<td>7,72</td>
<td>7,69</td>
<td>7,65</td>
<td>7,64</td>
<td>7,69</td>
<td>7,74</td>
<td>7,77</td>
<td>7,82</td>
</tr>
<tr>
<td>2004</td>
<td>7,90</td>
<td>7,89</td>
<td>7,96</td>
<td>7,94</td>
<td>7,99</td>
<td>7,99</td>
<td>8,03</td>
<td>8,03</td>
<td>8,11</td>
<td>8,24</td>
<td>8,31</td>
<td>8,34</td>
</tr>
<tr>
<td>2005</td>
<td>8,42</td>
<td>8,43</td>
<td>8,44</td>
<td>8,37</td>
<td>8,32</td>
<td>8,28</td>
<td>8,17</td>
<td>8,17</td>
<td>8,19</td>
<td>8,20</td>
<td>8,20</td>
<td>8,18</td>
</tr>
<tr>
<td>2006</td>
<td>8,13</td>
<td>8,06</td>
<td>8,05</td>
<td>7,95</td>
<td>7,84</td>
<td>7,76</td>
<td>7,60</td>
<td>7,59</td>
<td>7,61</td>
<td>7,67</td>
<td>7,72</td>
<td>7,76</td>
</tr>
<tr>
<td>2007</td>
<td>7,81</td>
<td>7,80</td>
<td>7,79</td>
<td>7,79</td>
<td>7,80</td>
<td>7,79</td>
<td>7,88</td>
<td>8,08</td>
<td>8,48</td>
<td>9,37</td>
<td>9,98</td>
<td>9,99</td>
</tr>
<tr>
<td>2008</td>
<td>10,04</td>
<td>9,98</td>
<td>9,69</td>
<td>9,19</td>
<td>8,74</td>
<td>8,44</td>
<td>8,07</td>
<td>7,89</td>
<td>7,73</td>
<td>7,46</td>
<td>7,13</td>
<td>6,83</td>
</tr>
<tr>
<td>2009</td>
<td>6,43</td>
<td>6,17</td>
<td>6,08</td>
<td>6,06</td>
<td>6,02</td>
<td>5,95</td>
<td>5,89</td>
<td>5,91</td>
<td>5,99</td>
<td>6,17</td>
<td>6,39</td>
<td>6,67</td>
</tr>
<tr>
<td>2010</td>
<td>6,90</td>
<td>7,08</td>
<td>7,16</td>
<td>7,23</td>
<td>7,30</td>
<td>7,34</td>
<td>7,37</td>
<td>7,46</td>
<td>7,62</td>
<td>7,77</td>
<td>7,89</td>
<td>8,02</td>
</tr>
<tr>
<td>2011</td>
<td>8,08</td>
<td>8,15</td>
<td>8,20</td>
<td>8,24</td>
<td>8,27</td>
<td>8,27</td>
<td>8,29</td>
<td>8,27</td>
<td>8,29</td>
<td>8,33</td>
<td>8,37</td>
<td>8,38</td>
</tr>
<tr>
<td>2012</td>
<td>8,35</td>
<td>8,30</td>
<td>8,14</td>
<td>7,83</td>
<td>7,53</td>
<td>7,30</td>
<td>7,19</td>
<td>7,21</td>
<td>7,30</td>
<td>7,48</td>
<td>7,68</td>
<td>7,80</td>
</tr>
<tr>
<td>2013</td>
<td>7,93</td>
<td>8,05</td>
<td>8,12</td>
<td>8,20</td>
<td>8,24</td>
<td>8,29</td>
<td>8,36</td>
<td>8,50</td>
<td>8,72</td>
<td>8,99</td>
<td>9,28</td>
<td>9,49</td>
</tr>
<tr>
<td>2014</td>
<td>9,66</td>
<td>9,72</td>
<td>9,75</td>
<td>9,72</td>
<td>9,61</td>
<td>9,51</td>
<td>9,46</td>
<td>9,29</td>
<td>9,07</td>
<td>8,95</td>
<td>8,86</td>
<td></td>
</tr>
</tbody>
</table>

Zdroj: SZIF

8.6 Spotřeba mléka a mléčných výrobků

Domácí spotřeba mléka a mléčných výrobků se dlouhodobě drží na úrovni 234 kg na osobu ročně. Největší pokles ve spotřebě mléčných výrobků byl v první polovině 90. let minulého století. Liberalizace cen a s ní spojené zrušení záporné daně z obratu vedlo ke skokovému zvýšení ceny nejen mléka, ale i dalších potravin, čímž došlo k tomu, že spotřebitelé nebyli ochotni nakupovat velká množství mléka a mléčných výrobků a spotřeba poklesla až pod hranici 180 kg na osobu a rok.

Mění se i spotřebitelské preference. Za posledních dvacet let se snížila spotřeba konzumního mléka z 80 na 60 kg na osobu a rok. Roste spotřeba čerstvého pasterovaného mléka na úkor trvanlivého. Spotřeba tvarohu vzrostla z 2,5 kg na 3,5 kg na osobu a rok. Významně vzrostla spotřeba sýrů o polovinu na 16 kg na osobu a rok. Spotřeba zakysaných výrobků se pohybou kolem 16 kg na osobu a rok. Másla se zkonzumuje kolem 5 kg na osobu a rok. Přibližně 40 % zkonzumovaných výrobků v ČR je dovezených. Nejvíce se dováží másla, sýry a zakysané výrobky.

Spotřeba v EU se také dlouhodobě drží na stejných hodnotách. Právě z důvodu stagnující spotřeby mléka a mléčných výrobků byly zavedeny kvóty na mléko. Po jejich zrušení se očekává zvýšení produkce a pokles ceny mléka. Nižší ceny za mléko a mléčné výrobky by mohly v budoucnosti vést ke zvýšení spotřeby mléka a mléčných výrobků.
8.7 Zahraniční obchod

ČR je významným exportérem mléka. V roce 2013 se z ČR vyvezla více než 1 mld. litrů mléka. Ve stejném roce se do země dovezlo 860 milionů litrů mléka. Dlouhodobě je u nás vývoz vyšší než dovoz. Významnou oblastí pro vývoz je Asie. Čína je země s nezanedbatelnou poptávkou po mléce. Po skandálu s čínským mlékem, kdy došlo k otravě desetitisíci dětí, už obyvatelé Číny jejich mléko nevěří a poptávají mléko z evropských zemí. Vývoz mléka a mléčných výrobků do Číny a dalších asijských zemí je velkou příležitostí pro evropské producenty mléka.

Problémem zahraničního obchodu s mlékem v ČR je to, že se vyváží syrové nezpracované mléko. Následně se zpět do země dovezou mléčné výrobky, které byly zpracovány v zahraničí. ČR se takovým chováním připravuje o zisk z přidané hodnoty. Stejná situace je na našem trhu i s hovězím nebo vepřovým masem, kdy se vyváží živá zvířata a naopak se dováží zpracované masné výrobky. Pokud se vyváží surovina a dováží hotové výrobky, má to špatný vliv na úroveň zpracovatelského průmyslu. Zpracovatelský průmysl by se měl podporovat, protože dává produktům přidanou hodnotu a navíc vytváří pracovní místa pro obyvatele země. Rozvinutý zpracovatelský průmysl je výsadou rozvinutých zemí s dobrou životní úrovní obyvatel, naopak vyvážení nezpracovaných surovin je typické pro rozvojové země. Bohužel se ČR v obchodu s mlékem i jinými komoditami blíží k rozvojovým zemím. Producenti mléka, kteří hospodaří nedaleko od hranic s Německem, často prodávají syrové mléko raději do mlékáren v Německu než do tuzemských, protože jim německé mlékárny nabízejí dlouhodobější kontrakty a lepší ceny. Stejná situace platí u farem u rakouských hranic. Na náš trh jsou pak dováženy a spotřebiteli nakupovány německé a rakouské výrobky z českého mléka, kdy ale spotřebitel přidanou hodnotu zaplatí Německu nebo Rakousku.
9 VLIV EU NA PRODUKCI MLÉKA

9.1 Mléčné kvóty

Problematika mléčných kvót vždy patřila k nejdiskutovanějším změnám po vstupu ČR do EU. Národní mléčné kvóty udávají množství mléka, které můžeme vyprodukovat v rámci národního hospodaření. Individuální kvóty pak ohraňovaly produkci jednotlivých podniků. Při překročení hranice množství vyprodukovaného mléka se musela zaplatit pokuta. Systém mléčných kvót měl sloužit k vyrovnání produkce mléka v rámci evropského trhu. Spotřeba mléka a mléčných produktů v Evropě totiž dlouhodobě stagnuje, naopak produkce mléka má tendenci se stále zvyšovat, což by na trhu vedlo k převaze nabídky nad poptávkou a k poklesu cen. Omezená produkce mléka měla chránit farmáře před nízkými cenami z nadprodukcí, neboť kvótami jsou omezeny všechny země, které tudíž nemohou vyrábět přebytky a dodávat je levně na tuzemský trh. To stejné platí i v případě mlékáren, kdy omezená produkce mléka zajišťovala prostor pro odbyt jejich výrobků, navíc za uspokojivé ceny. Kvóta pro ČR byla pro rok 2014/2015 stanovena na hodnotě 2906440 tun.

Od 1. dubna 2015 došlo ke zrušení regulace trhu pomocí mléčných kvót. Následně se bude trh s mlékem a mléčnými produkty řídit podle nového nařízení vlády č. 282/2014 Sb. Od 1. dubna se musí všechny podnikatelské subjekty nakupující syrové kravské mléko nahlásit na Státní zemědělský intervenční fond (SZIF) jako první kupující. Při hlášení o dodávkách syrového kravského mléka už nemusí první kupující uvádět individuální kvótu a obsah tuku, čímž odpadá i povinnost odběru mléka a zjišťování obsahu tuku v akreditované laboratoři (SZIF, 2015).

Zrušení mléčných kvót bylo odsouhlaseno už v roce 2008 v souvislosti s liberalizací trhu. ČR od počátku s touto změnou souhlasila a svůj postoj nezměnila. Přesto se v roce 2014 hlasovalo v Bruselu o předčasném zrušení mléčných kvót, které ale nakonec odhlasováno nebylo. ČR hlasovala proti předčasnému zrušení kvót. Ministr zemědělství Marian Jurečka řekl, že pro předčasné zrušení kvót usilovaly především země, které už v té době měli nadprodukcí mléka. Byly to všechny sousední země kromě Slovenska. Tyto země se nadprodukcí už připravovaly na zrušení kvót, chtěly získat výsadní postavení na trhu a vyhnout se pokutám z nadprodukcí. Marian Jurečka ale neviděl důvod, proč by měly být kvóty zrušeny dříve, protože tím by došlo k poškození
producentů mléka v zemích, které podmínky stanovené EU dodržují, což je i případ ČR. Tyto země omezily svou produkci v souvislosti se splněním podmínek EU a měly by mít dostatek času připravit se na zvýšení produkce po zrušení mléčných kvót (EAGRI, 2014).

Čeští farmáři se teď obávají prudkého poklesu cen mléka vlivem zvýšené nabídky. Většina malých a středních podniků zabývajících se produkci mléka si není jistá, zda ustojí pokles ceny, aby u nich nedošlo ke krachu. Zrušení kvót by mohlo být výhodou pro velké producenty mléka na úkor drobných farmářů. Mlékárny se obávají krachu z důvodu dovozu levných výrobků ze zahraničí. Problemem je, že v okolních státech je chov krav na mléko dotovaný výrazně více než u nás. Proto mají čeští producenti mléka ze zrušení kvót obavy. Podle různých výzkumů reálně hrozí mnohým českým farmářům a mlékárnám krach, čímž se otevře prostor pro dovoz levnějších zahraničních výrobků.

Po zrušení kvót by naopak měli navýšit svou produkci země na severozápadě Evropy včetně Německa. Hrozí reálně nebezpečí, že by byl nakonec tuzemský trh zaplaven výrobky právě ze západu Evropy. Na české farmáře bude kvůli zrušení kvót kladen tlak na další zefektivnění výroby, využívání moderních technologií a snižování nákladů.

Mnoho odborníků naopak tvrdí, že zrušení kvót nebude mít výrazný vliv na tuzemskou produkcí mléka. Sice očekávají mírný pokles ceny, ale nevidí situaci kriticky. Rozhodně odmítají katastrofické předpovědi. Tuzemští zemědělci chovající dojnice jsou schopní usatí evropskou konkurenci a udržet si postavení na evropském trhu. České mléko je svou kvalitou na úrovni nejlepších evropských producentů. Pozitivním jevem je i zvyšující se zájem českých spotřebitelů o domácí produkty. Někteří odborníci se odkazují na velké přiležitosti odbytu mléka do Asie.

Změny na trhu s mlékem se neprojeví ihned po zrušení kvót, protože mají zemědělci uzavřené dlouhodobé smlouvy s mlékárnami. První změny se tedy nejspíše projeví až několik měsíců po zrušení kvót.

9.2 Dotace pro chovatele dojnic

V následující kapitole je uveden přehled dotací, které mohou využít chovatelé dojnic pro podporu svých chovů. Mezi dotace, které mohou čeští farmáři získat, patří Jednotná platba na plochu, Přechodné vnitrostátní podpory, které se poskytují mimo jiné i na přežvýkavce, a Zvláštní podpora na krávy chované v systému s tržní produkci.
mléka. Další formou pomoci českým chovatelům dojnic je možnost vyjednávat smluvní podmínky pomocí sdružení a organizací.

9.2.1 Jednotná platba na plochu (SAPS)
SAPS je hlavní platbou přímých plateb. O tuto platbu může požádat každá fyzická nebo právnická osoba, která hospodaří na zemědělské půdě a je vedena v evidenci využití zemědělské půdy podle uživatelských vztahů (LPIS). Platba je plně hrazena z prostředků EU. Žádost se podává jednou ročně, je součástí Jednotné žádosti (SZIF, 2015).

9.2.2 Přechodné vnitrostátní podpory (PVP)
PVP jsou platby poskytované mimo jiné na zemědělskou půdu a na přežvýkavce (dále na chov krav bez tržní produkce mléka, chov ovcí a koz, chmel a brambory). Žadatelem o PVP může být fyzická nebo právnická osoba nebo obec. Dotace je poskytována žadatelům, kteří v daném roce obdrželi dotaci SAPS. Podpora je hrazena z rozpočtu ČR a žádost se podává v rámci Jednotné žádosti (SZIF, 2015).

9.2.3 Zvláštní podpora na krávy chované v systému s tržní produkci mléka (dojnice)
Tato platba je vyplácena žadateli podle celkového počtu velkých dobytčích jednotek (VDJ), který se stanovuje podle počtu chovaných dojnic. Hospodářství musí být registrováno v ústřední evidenci vedené podle plemenářského zákona. Dotace je poskytnuta žadatelům, u kterých je podíl příjmů z prodeje mléka minimálně 15 % z celkových příjmů ze zemědělské výroby. Prostředky jsou poskytovány plně z prostředků EU a zemědělec o ni žádá jednou ročně v rámci Jednotné žádosti (SZIF, 2015).

9.2.4 Podpora českých farmářů
Na podporu českých farmářů po zrušení kvót bylo přijato opatření, kdy je možné sjednat smluvní podmínky kolektivně prostřednictvím organizací prodoucentů a sdružení organizací prodoucentů, a zvláštní pravidla pro mezioborové organizace. Pro české zemědělce to znamená silnější pozici při vyjednávání, než kdyby každý zemědělec vyjednával sám za sebe. Po zrušení kvót budou moci čeští producenti využít podpory prostřednictvím přímých plateb a Programu rozvoje venkova. V případě velkého poklesu cen nebo krize bude možné využít nástroje záchranné sítě Společné organizace trhu EU (EAGRI, 2014).
Program rozvoje venkova 2014-2020

Program rozvoje venkova (PRV) je základní dokument Ministerstva pro čerpání dotací z Evropského zemědělského fondu pro rozvoj venkova. PRV je zaměřen na investice do zemědělských podniků, na podporu mladých zemědělců, dále na podporu zpracovatelského průmyslu, maloobchodu a stavebnictví. Podporován je i cestovní ruch ve formě agroturistiky nebo bioplynové stanice. Konkrétně mohou být dotovány např. stáje, sklady, technologie pro živočišnou i rostlinnou výrobu, jímky, hnojíště nebo speciální stroje. Dále bude dotováno i zpracování produktů, balení a značení výrobků a monitoring kvality (Došková, 2014).

Součástí programu jsou i plošná opatření zaměřená na udržitelné hospodaření na zemědělské a lesní půdě, nově je navíc v programu zařazeno i opatření Dobré životní podmínky zvířat, týkající se především chovu skotu a prasat.
ZÁVĚR

Bakalářská práce se zabývala faktory ovlivňujícími produkci mléka a situací na trhu s mlékem. Produkce mléka je složitý systém, ve kterém jsou jednotlivé části spolu propojené a vzájemně se ovlivňují. Vliv na produkci mléka má plemeno, úroveň ustájení a ošetřovatelské péče, výživa. Neopomenutelnou podmínkou jsou striktně dodržovaná hygienická pravidla v chovu a při dojení. Pokud bude jeden nebo více z faktorů negativně ovlivňovat dojnice, dojde ke snížení produkce mléka, ke změně v obsahu mléčných složek a ke zhoršení zdravotního stavu zvířat. To pak vytváří další náklady na produkci a zhoršuje ekonomickou situaci chovatele.

Zpeněžování mléka už není závislé pouze na množství prodaného mléka. Faktory, které ovlivňují výslednou cenu mléka, jsou obsahy mléčných složek, CPM, SB, BM, RIL. Podle hodnot zminěných faktorů se mléko řadí do kategorií jakosti, kdy za mléko lepší kategorie dostane chovatel více peněz. Ve Smlouvách mezi chovatelem a mlékárnami mohou být uvedeny i speciální příplatky za vyšší obsah mléčných složek. RIL se v mléku nesmí objevit.

České mléko se svou kvalitou vyrovná i nejlepším evropským producentům. Stále je třeba věnovat pozornost zlepšení úrovně tuzemských chovů a zlepšení rentability produkce, aby byli čeští producenti mléka konkurenceschopní. Ceny mléka ovlivňuje situace na evropském, potažmo světovém trhu s mlékem. Česká produkce mléka zastupuje jen malý podíl v evropské produkci, proto nevytváří podmínky, ale musí se přizpůsobit evropskému trhu.

Velkou změnou pro evropský trh s mlékem je zrušení mléčných kvót. Pro následné změny na trhu s mlékem existují různé scénáře. Teď ještě nedá určitost říct, jak se bude nadále trh s mlékem vyvíjet. Může se stát, že se situace na trhu příliš nezmění a cena mléka jen trochu poklesne. Na druhou stranu se může výrazně navýšit množství produkovaného mléka v Evropě. To by vedlo k nadbytku na trhu a k velkému poklesu ceny. Evropa nyní vidi možnosti v odbytu mléka především v Asii, kde je velká poptávka po evropském mléku.
PŘEHLED POUŽITÉ LITERATURY

SEZNAM OBRÁZKŮ
Obrázek 1 Holštýnská dojnice
Obrázek 2 Dojnice plemene jersey
Obrázek 3 Dojnice plemene ayrshire
Obrázek 4 Dojnice plemene montbeliard
Obrázek 5 Dojnice plemene čestr

SEZNAM TABULEK
Tabulka 1 Třídy kvality mléka
Tabulka 2 Obsah mléčného tuku v kravském mléce (v\%)
Tabulka 3 Obsah mléčných bílkovin v kravském mléce (v \%)
Tabulka 4 Roční produkce mléka ve vybraných zemích v tisících tun
Tabulka 5 Průměrné roční ceny vyplácené mlékárnami v letech 2001 až 2014 v Kč za litr.
Tabulka 6 Ceny mléka vyplácené mlékárnami v Kč za litr

SEZNAM GRAFŮ
Graf 1 Stavy skotu od roku 1985 do roku 2013
Graf 2 Vývoj stavů dojních krav v ČR
Graf 3 Obsah tuku v kravském mléce v \%
Graf 4 Obsah mléčných bílkovin v \%
Graf 5 Průměrná užitkovost jedné dojnice v kg
Graf 6 Roční produkce kravského mléka v tisících tun
Graf 7 Průměrná cena mléka v Kč za litr při výkupu do mlékáren